5,062
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Isotope ratio method: state-of-the-art of forensic applications to CBRNE materials

, , , &
Pages 115-141 | Received 22 Dec 2020, Accepted 13 Mar 2022, Published online: 15 Apr 2022

References

  • Public Safety Canada. Chemical, biological, radiological, nuclear and explosives resilience strategy for Canada. 2011. Public Safety Canada. https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/rslnc-strtg/rslnc-strtg-eng.pdf
  • Matos MPV, Jackson GP. Isotope ratio mass spectrometry in forensic science applications. Forensic Chem. 2019;13:100154.
  • Benson S, Lennard C, Maynard P, et al. Forensic applications of isotope ratio mass spectrometry—A review. Forensic Sci Int. 2006;157(1):1–22.
  • Chesson LA, Tipple BJ, Howa JD, et al. Stable isotopes in forensics applications. In: Treatise on geochemistry. Vol. 14. 2nd ed. 2014. p. 285–317. Amsterdam: Elsevier Ltd.
  • Cerling TE, Barnette JE, Bowen GJ, et al. Forensic stable isotope biogeochemistry. Annu Rev Earth Planet Sci. 2016;44(1):175–206.
  • Gentile N, Siegwolf RTW, Esseiva P, et al. Isotope ratio mass spectrometry as a tool for source inference in forensic science: a critical review. Forensic Sci Int. 2015;251:139–158.
  • “Forensic Isotope Ratio Mass Spectrometry (FIRMS) Network. http://www.forensic-isotopes.org/.
  • McGuire RR, Velsko CA, Lee CG, et al. The use of post detonation analysis of stable isotope ratios to determine the type and production process of the explosive involved. Lawrence Livermore National Laboratory report UCRL-ID-113275, 1993 March.
  • Dunn PJH, Carter JF. Good practice guide for isotope ratio mass spectrometry. 2nd ed. 2018. Department for Business, Energy and Industrial Strategy, UK.
  • Kristo M, Williams R, Gaffney A, et al. The application of radiochronometry during the 4th collaborative materials exercise of the nuclear forensics International Technical Working Group (ITWG). J Radioanal Nucl Chem. 2018;315(2):425–434.
  • Ehleringer JR, Thompson AH, Podlesak DW, et al. A framework for the incorporation of isotopes and isoscapes in geospatial forensic investigations. In: West JB, et al., editors. Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Dordrecht: Springer, 2010.
  • Ehleringer JR, Matheson SM. Stable isotopes and courts. Utah Law Rev. 2010;2:385–442.
  • Public Safety Canada. Countering the proliferation of chemical, biological, radiological and nuclear weapons, their precursors, and dual-use sensitive technology and knowledge. https://www.publicsafety.gc.ca/cnt/ntnl-scrt/cntr-trrrsm/cntr-prlfrtn/index-en.aspx#s1.
  • Mirjankar NS, Fraga CG, Carman AJ, et al. Source attribution of cyanides using anionic impurity profiling, stable isotope ratios, trace elemental analysis and chemometrics. Anal Chem. 2016;88(3):1827–1834.
  • Tea I, Antheaume I, Zhang BL. A test to identify cyanide origin by isotope ratio mass spectrometry for forensic investigation. Forensic Sci Int. 2012;217(1–3):168–173.
  • Moran JJ, Fraga CG, Nims MK. Stable-carbon isotope ratios for sourcing the nerve-agent precursor methylphosphonic dichloride and its products. Talanta. 2018;186:678–683.
  • Kreuzer-Martin HW, Chesson LA, Lott MJ, et al. Stable isotope ratios as a tool in microbial forensics – Part 1. Microbial isotopic composition as a function of growth medium. J Forensic Sci. 2004;49(5):2003226.
  • Kreuzer-Martin HW, Chesson LA, Lott MJ, et al. Stable isotope ratios as a tool in microbial forensics – Part 2. Isotopic variation among different growth media as a tool for sourcing origins of bacterial cells or spores. J Forensic Sci. 2004;49(5):2003227.
  • Kreuzer-Martin HW, Chesson LA, Lott MJ, et al. Stable isotope ratios as a tool in microbial forensics – Part 3. Effect of culturing on agar-containing growth media. J Forensic Sci. 2005;49(6):2004513.
  • Kreuzer-Martin HW, Jarman KH. Stable isotope ratios and forensic analysis of microorganisms. Appl Environ Microbiol. 2007;73(12):3896–3908.
  • Horita J, Vass AA. Stable-isotope fingerprints of biological agents as forensic tools. J Forensic Sci. 2003;48(1):122–126.
  • Kreuzer-Martin HW, Lott MJ, Dorigan J, et al. Microbe forensics: Oxygen and hydrogen stable isotope ratios in Bacillus subtilis cells and spores. Proc Natl Acad Sci U S A. 2003;100(3):815–819.
  • Kreuzer HW, West JB, Ehleringer JR. Forensic applications of light-element stable isotope ratios of ricinus communis seed and ricin preparations. J Forensic Sci. 2013;58:S43–S51.
  • Wallenius M, Morgenstern A, Apostolidis C, et al. Determination of the age of highly enriched uranium. Anal Bioanal Chem. 2002;374:379–384.
  • Varga Z, Wallenius M, Mayer K, et al. Alternative method for the production date determination of impure uranium ore concentrate samples. J Radioanal Nucl Chem. 2011;290(2):485–492.
  • Higginson M, Gilligan C, Taylor F, et al. Development of rapid methodologies for uranium age dating. J Radioanal Nucl Chem. 2018;318(1):157–164.
  • Wallenius M, Mayer K, Ray I. Nuclear forensic investigations: Two case studies. Forensic Sci Int. 2006;156(1):55–62.
  • Gaffney AM, Hubert A, Kinman WS, et al. Round-robin 230Th–234U age dating of bulk uranium for nuclear forensics. J Radioanal Nucl Chem. 2016;307(3):2055–2060.,
  • Okubo A, Shinohara N, Magara M. Uranium age-dating using in-situ isotope ratios by thermal ionization mass spectrometry for nuclear forensics. J Radioanal Nucl Chem. 2017;314(1):231–234.
  • Rolison JM, Treinen KC, McHugh KC, et al. Application of the 226Ac-230Th-234U and 227Ac-231Pa-235U radiochronometers to uranium certified reference materials. J Radioanal Nucl Chem. 2017;314(3):2459–2467.
  • Varga Z, Nicholl A, Hrnecek E, et al. 2018 Measurement of the 231Pa/-235U ratio for the determination of uranium materials. J Radioanal Nucl Chem. 2018;318(3):1565–1571.
  • Varga Z, Wallenius M, Nicholl A, et al. Measurement of production date (age) of nanogram amount of uranium. J Radioanal Nucl Chem. 2019;322(3):1585–1591.
  • Denton JS, Treinen KC, Chen Y, et al. International cooperation in age-dating uranium standards for nuclear forensics using the 231Pa/235U radiochronometer. J Radioanal Nucl Chem. 2020;324:705–714.
  • Kayzar-Boggs TM, Treinen KC, Okubo A, et al. An interlaboratory collaboration to determine consensus 231Pa/235U model ages of a uranium certified reference material for nuclear forensics. J Radioanal Nucl Chem. 2020;323(3):1189–1195.
  • Richter S, Alonso A, De Bolle W, et al. Isotopic fingerprints for natural uranium ore samples. Int J Mass Spectrom. 1999;193(1):9–14.
  • Švedkauskaitė-LeGore J, Rasmussen G, Abousahl S, et al. Investigation of the sample characteristics needed for the determination of the origin of uranium-bearing materials. J Radioanal Nucl Chem. 2008;278(1):201–209.
  • Varga Z, Wallenius M, Mayer K, et al. Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates. Anal Chem. 2009;81(20):8327–8334.
  • Varga Z, Wallenius M, Mayer K, et al. Analysis of uranium ore concentrates for origin assessment. Proc Radiochim Acta. 2011;1(1):27–30.
  • Migeon V, Fitoussi C, Pili E, et al. Molybdenum isotope fractionation in uranium oxides and during key processes of the nuclear fuel cycle: towards a new nuclear forensic tool. Geochem Cosmochim Acta. 2020;279:238–257.
  • Fayek M, Horita J, Ripley EM. The oxygen isotopic composition of uranium minerals: A review. Ore Geol Rev. 2011;41(1):1–21.
  • Krajko J, Varga Z, Yalcintas E, et al. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates. Talanta. 2014;129:499–504.
  • Han SH, Varga Z, Krajko J, et al. Measurement of the sulphur isotope ratio (34S/32S) in uranium ore concentrates (yellow cakes) for origin assessment. J Anal At Spectrom. 2013;28(12):1919–1925.
  • Tamborini G, Phinney D, Blidstein O, et al. Oxygen isotopic measurements by secondary ion mass spectrometry in uranium oxide microparticles: A nuclear forensic diagnostic. Anal Chem. 2002;74(23):6098–6101.
  • Pajo L, Tamborini G, Mayer K, et al. Use of thermal ionization mass spectrometry for measuring the oxygen isotope ratio in uranium oxides. Radiochemistry. 2001;43(5):451–454.
  • Oerter EJ, Singleton M, Dai Z, et al. Hydrogen and oxygen stable isotope composition of water in metaschoepite mineralization on U3O8. Appl Geochem. 2020;112:104469.
  • Balboni E, Jones N, Spano T, et al. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications. Appl Geochem. 2016;74:24–32.
  • Spano T, Simonetti A, Balboni E, et al. Trace element and U isotope analysis of uraninite and ore concentrate: Applications for nuclear forensic investigations. Appl Geochem. 2017;84:277–285.
  • Fujikawa Y, Fukui M, Sugahara M, Ikeda E, Shimada M. Variation in uranium isotopic ratios 234U/238U and 235U/total-U in Japanese soil and water samples – Application to environmental monitoring. Proceedings from the 10th International Congress of the International Radiation Protection Association, 14–19 May 2000, Hiroshima, Japan, P-4a-238.
  • Faure AL, Rodriguez C, Marie O, et al. Detection of traces of fluorine in micrometer sized uranium bearing particles using SIMS. J Anal At Spectrom. 2014;29(1):145–151.
  • Kips R, Kristo MJ, Hutcheon ID, et al. Determination of the relative amount of fluorine in uranium oxyfluoride particles using secondary ion mass spectrometry and optical spectroscopy. Lawrence Livermore National Laboratory Report LLNL-PROC-414029. 2009; June.
  • Lehto S. Development of a SIMS method for isotopic analysis of uranium containing particles. Radiation and Nuclear Safety Authority (STUK) Technical Report in Finland, STUK-YTO-TR 188 2002. July.
  • Tamborini G, Betti M. Characterisation of radioactive particles by SIMS. Mikrochim Acta. 2000;132(2–4):411–417.
  • Schwantes JM, Marsden O, Reilly D. Fourth collaborative materials exercise of the nuclear forensics International Technical Working Group. J Radioanal Nucl Chem. 2018;315(2):347–352.
  • Stebelkov V, Elantyev I, Hedberg M, et al. Determination of isotopic composition of uranium in the CMX-4 samples by SIMS. J Radioanal Nucl Chem. 2018;315(2):417–423.
  • Kuchkin A, Stebelkov V, Zhizhin K, et al. Contribution of bulk mass spectrometry isotopic analysis to characterization of materials in the framework of CMX-4. J Radioanal Nucl Chem. 2018;315(2):435–441.
  • Buchmann JH, Sarkis JES, Kakazu MH, et al. Environmental monitoring as an important tool for safeguards of nuclear material and nuclear forensics. J Radioanal Nucl Chem. 2006;270(2):291–298.
  • Tamborini G. SIMS analysis of uranium and actinides in microparticles of different origin. Microchim Acta. 2004;145(1–4):237–242.
  • Wood HG. Effects of separation processes on minor uranium isotopes in enrichment cascades. Sci Glob Secur. 2008;16(1–2):26–36.
  • Fetter S. Nuclear archaeology: Verifying declarations of fissile-material production. Sci Glob Secur. 1993;3(3–4):237–259.
  • Tait JC, Gaould I, Kerr AH. Validation of the ORIGEN-S Code for predicting radionuclide inventories in used CANDU fuel. AECL internal report AECL-10891, CANDU Owners Group internal report COG-93-346; 1994.
  • DeHart MD, Brady MC, Parks CV. OECD/NEA burnup credit calculational criticality benchmark phase I-B results. Oak Ridge National Laboratory internal report ORNL-6901, NEA report NEA/NSC/DOC(96)-06; 1996.
  • Konegger-Kappel S, Prohaska T. Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS. Anal Bioanal Chem. 2016;408(2):431–440.
  • Palmer CJ, Gerez KR, Schwantes JM, et al. Scoping evaluation of trace isotopic ratios within the noble metal-phase as indicators of reactor class. Prog Nucl Energy. 2019;117:103059.
  • Wallenius M, Mayer K. Age determination of plutonium material in nuclear forensics by thermal ionisation mass spectrometry. Fresenius J Anal Chem. 2000;366(3):234–238.
  • Wallenius M, Peerani P, Koch L. Origin determination of plutonium material in nuclear forensics. J Radioanal Nucl Chem. 2000;246(2):317–321.
  • Tamborini G, Wallenius M, Bildstein O, et al. Development of a SIMS method for isotopic measurements in nuclear forensic applications. Microchim Acta. 2002;139(1–4):185–188.
  • Nygren U, Rameback H, Nilsson C. Age determination of plutonium using inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem. 2007;272(1):45–51.
  • Isselhardt BH, Savina MR, Kucher A, et al. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS. J Radioanal Nucl Chem. 2016;307(3):2487–2494.
  • Kattathu M, Kayzar-Boggs T, Varga Z, et al. Intercomparison of radio-chronometric ages of plutonium-certified reference materials with distinct compositions. Anal Chem. 2019;91(18):11643–11652.
  • Christl M, Guérin N, Totland M, et al. A novel chronometry technique for dating irradiated uranium fuels using Cm isotopic ratios. J Radioanal Nucl Chem. 2019;322(3):1611–1620.
  • Wallenius M. Origin determination of reactor produced plutonium by mass spectrometric techniques: Application to nuclear forensic science and safeguards [PhD thesis]. Finland: University of Helsinki; 2001.
  • Dimayuga I, Corbett S, Edwards G, et al. Nuclear forensics signatures of irradiated CANDU fuel. IAEA-TECDOC-1820, International Atomic Energy Agency. 2017; p. 17–30.
  • Osborn JM, Kitcher ED, Burns JD, et al. Nuclear forensics methodology of chemically separated plutonium. Nucl Technol. 2018;201(1):1–10.
  • Osborn JM, Glennon KJ, Kitcher ED, et al. Computational and experimental forensics characterization of weapons-grade plutonium produced in a thermal neutron environment. Nucl Eng Technol. 2018;50(6):820–828.
  • Osborn JM, Glennon KJ, Kitcher ED, et al. Experimental validation of a nuclear forensics methodology for source reactor-type discrimination of chemically separated plutonium. Nucl Eng Technol. 2019;51(2):384–393.
  • Glennon KJ, Osborn JM, Burns JD, et al. Measuring key Sm isotope ratios in irradiated UO2 for use in plutonium discrimination nuclear forensics. J Radioanal Nucl Chem. 2019;320(2):405–414.
  • Kitcher ED, Osborn JM, Chirayath SS, Sensitivity studies on a novel nuclear forensics methodology for source reactor-type discrimination of separated weapons-grade plutonium. Nucl Eng Technol. 2019;51(5):1355–1364.
  • Zhang W, Ungar K, Hoffman I, et al. Xenon isotopic signature study of the primary coolant on CANDU nuclear power plant to enhance CTBT verification. J Radioanal Nucl Chem. 2009;280(1):121–128.
  • Kalinowski MB, Liao Y-Y, Pistner C. Discrimination of nuclear explosions against civilian sources based on atmospheric radioiodine isotopic activity ratios. Pure Appl Geophys. 2014;171(3–5):669–676.
  • Charbonneau L, Benoit J-M, Jovanovic S, et al. A nuclear forensic method for determining the age of radioactive cobalt sources. Anal Methods. 2014;6(4):983–992.
  • Vesterlund A, Chernikova D, Cartemo P, et al. Characterization of strong 241Am sources. Appl Radiat Isot. 2015;99:162–167.
  • Steeb JL, Graczyk DG, Tsai Y, et al. Age-dating methodology for 137Cs ceramic sources. J Radionucl Chem. 2016;309:999–1019.
  • Steeb JL, Graczyk DG, Tsai Y, et al. Application of mass spectrometric isotope dilution methodology for a 90Sr age-dating with measurements by thermal-ionization and inductively coupled-plasma mass spectrometry. J Anal At Spectrom. 2013;28(9):1493.
  • McLain DR, Tsai Y, Graczyk DG, et al. An alternative separation procedure for 90Sr age dating using DGA resin. J Radioanal Nucl Chem. 2018;317(3):1439–1445.
  • Reid BD, Morgan WC, Love EF, et al. Graphite isotope ratio method development report: Irradiation test demonstration of uranium as a low fluence indicator. Pacific Northwest National Laboratory Report PNNL-13056; 1999.
  • Gesh CJ. A graphite isotope ratio method primer – A method for estimating plutonium production in graphite moderated reactors. Pacific Northwest National Laboratory Report PNNL-14568; 2004.
  • Gerlach DC, Cliff JB, Hurley DE, et al. Secondary ionization mass spectrometric analysis of impurity element isotope ratios in nuclear reactor materials. Appl Surf Sci. 2006;252(19):7041–7044.
  • Remeikis V, Plukis A, Plukienė R, et al. Method based on isotope ratio mass spectrometry for evaluation of carbon activation in the reactor graphite. Nucl Eng Des. 2010;240(10):2697–2703.
  • Gerlach D, Gesh C, Mitchell M, et al. Determination of light water reactor fuel burnup with the isotope ratio method. Pacific Northwest National Laboratory Report PNNL-17053; 2007.
  • Christie WH, Eby RE, Warmack RJ, et al. Determination of boron and lithium in nuclear materials by secondary ion mass spectrometry. Anal Chem. 1981;53(1):13–17.
  • Tomiyoshi IA, Iyer SS, Rodrigues C, Determination of neutron fluence based on the measurement of isotopic variation of cadmium and gadolinium. Nucl Instrum Methods Phys Res. 1984;223(1):137–140.
  • Simonits A, Corte F, Hoste J, Zirconium as a multi-isotopic flux ratio monitor and a single comparator in reactor-neutron activation analysis. J Radioanal Chem. 1976;31(2):467–486.
  • Varga Z, Krajkó J, Peńkin M, et al. Identification of uranium signatures relevant for nuclear safeguards and forensics. J Radioanal Nucl Chem. 2017;312(3):639–654.
  • Atomic Energy Agency. International safeguards in the design of enrichment plants. Nuclear Energy Series No. NF-T-4. 2019;10.
  • Esaka F, Esaka KT, Lee CG, et al. Particle isolation for analysis of uranium minor isotopes in individual particles by secondary ion mass spectrometry. Talanta. 2007;71(3):1011–1015.
  • Krachler M, Varga Z, Nicholl A, et al. Analytical considerations in the determination of uranium isotope ratios in solid uranium materials using laser ablation multi-collector ICP-MS. Anal Chim Acta: X. 2019;2:100018.
  • Tarolli JG, Naes BE, Garcia BJ, et al. High resolution isotopic analysis of U-bearing particles via fusion of SIMS and EDS images. J Anal At Spectrom. 2016;31(7):1472–1479.
  • Peńkin M, Boulyga S, Dabbs B, et al. Isotopic composition of commercially available uranium chemicals and elemental analysis standards. J Radioanal Nucl Chem. 2018;316(2):791–798.
  • Rouben B. CANDU in-core fuel-management, Chapter 21. The essential CANDU. Hamilton, Canada: UNENE; 2016. http://www.unene.ca/essentialcandu/pdf/21%20-%20In-core%20FM.pdf.
  • Simons DS, Fassett JD. Measurement of uranium-236 in particles by secondary ion mass spectrometry. J Anal At Spectrom. 2017;32(2):393–401.
  • Tumey SJ, Brown TA, Buchholz BA, et al. Ultra-sensitive measurements of 233U by accelerator mass spectrometry for national security applications. J Radioanal Nucl Chem. 2009;282(3):721–724.
  • Stanley FE, Byerly BL, Thomas MR, et al. Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples. J Am Soc Mass Spectrom. 2016;27(6):1136–1138.
  • Inglis JD, Maassen J, Kara A, et al. A multiple ion counter total evaporation (MICTE) method for precise analysis of plutonium by thermal ionization mass spectrometry. J Radioanal Nucl Chem. 2017;312(3):663–673.
  • Gruning C, Huber G, Klopp P, et al. Resonance ionization mass spectrometry for ultratrace analysis of plutonium with a new solid state laser system. Int J Mass Spectrom. 2004;235(2):171–178.
  • Trautmann N, Passler G, Wendt KDA. Ultratrace analysis and isotope ratio measurements of long-lived radioisotopes by resonance ionization mass spectrometry (RIMS). Anal Bioanal Chem. 2004;378(2):348–355.
  • Raeder S, Hakimi A, Stobener N, et al. Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry. Anal Bioanal Chem. 2012;404(8):2163–2172.
  • Explosives Act, Canada, R.S., c. E-15, s. 1, 1985.
  • Chesson LA, Howa JD, Lott MJ, Ehleringer JR. Development of a methodological framework for applying isotope ratio mass spectrometry to explosive components. Forensic Chem. 2016;2:9–14.
  • Howa JD, Lott MJ, Chesson LA, Ehleringer JR, Isolation of components of plastic explosives for isotope ratio mass spectrometry. Forensic Chem. 2016;1:6–12.
  • Benson SJ. Introduction of isotope ratio mass spectrometry for the forensic analysis of explosives [PhD thesis]. University of Technology Sydney. 2009.
  • Benson SJ, Lennard CJ, Maynard P, et al . Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)-discrimination of ammonium nitrate sources. Sci Justice. 2009;49(2):73–80.
  • Gentile N. Exploration of the contribution of isotope ratio mass spectrometry to the investigation of explosives – A study of black powders and ammonium nitrate fertilisers [PhD thesis]. Université de Lausanne; 2014.
  • Howa JD, Barnette JE, Chesson LA, et al. TATP isotope ratios as influenced by worldwide acetone variation. Talanta. 2018;181:125–131.
  • Howa JD, Lott MJ, Chesson LA, et al. Carbon and nitrogen isotope ratios of factory-produced RDX and HMX. Forensic Sci Int. 2014;240:80–87.
  • Lock CM, Brust H, van Breukelen M, et al. Investigation of isotopic linkages between precursor materials and the improvised high explosive product hexamethylene triperoxide diamine. Anal Chem. 2012;84(11):4984–4992.
  • Bezemer K, McLennan L, Hessels R, et al. Chemical attribution of the homemade explosive ETN –Part II: isotope ratio mass spectrometry analysis of ETN and its precursors. Forensic Sci Int. 2020;313:110344.
  • Howa JD, Lott MJ, Ehleringer JR. Isolation and stable nitrogen isotope analysis of ammonium ions in ammonium nitrate prills using sodium tetraphenylborate. Rapid Commun Mass Spectrom. 2014;28(13):1530–1534.
  • Sisco E, Najarro M, Samarov D, et al. Quantifying the stability of trace explosives under different environmental conditions using electrospray ionization mass spectrometry. Talanta. 2017;165:10–17.
  • National Research Council Committee on review of the scientific approaches used during the FBI’s investigation of the 2001 Bacillus Anthracis Mailings. Review of the Scientific Approaches Used during the FBI’s Investigation of the 2001 Anthrax Letters. National Academies Press; 2011.
  • International Atomic Energy Agency. IAEA Incident and Trafficking Database (ITDB) 2020 Fact Sheet; 2020. https://www.iaea.org/sites/default/files/20/02/itdb-factsheet-2020.pdf