Publication Cover
Caryologia
International Journal of Cytology, Cytosystematics and Cytogenetics
Volume 71, 2018 - Issue 3
988
Views
1
CrossRef citations to date
0
Altmetric
Articles

Structural, functional, and phylogenetic characterization of phosphoenolpyruvate carboxylase (PEPC) in C4 and CAM plants

& ORCID Icon
Pages 272-288 | Received 24 Oct 2017, Accepted 13 Apr 2018, Published online: 17 Jul 2018

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–3402.
  • Andreo CS, Gonzalez DH, Iglesias AA. 1987. Higher plant phosphoenolpyruvate carboxylase. FEBS Lett. 213(1):1–8.
  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37(Web Server issue):W202–208.
  • Bailey TL, Gribskov M. 1998. Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 14(1):48–54.
  • Bläsing OE, Ernst K, Streubel M, Westhoff P, Svensson P. 2002. The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia–implications for the evolution of C4 photosynthesis. Planta. 215(3):448–456.
  • Bläsing OE, Westhoff P, Svensson P. 2000. Evolution of C4 phosphoenolpyruvate carboxylase inFlaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J Biol Chem. 275(36):27917–27923.
  • Brulfert J, Güclü S, Taybi T, Pierre J-N. 1993. Enzymatic responses to water-stress in detached leaves of the CAM plant Kalanchoe blossfeldiana Poelln. Plant Physiol Biochem. 31(4):491–497.
  • Chen L-M, Li K-Z, Miwa T, Izui K. 2004. Overexpression of a cyanobacterial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta. 219(3):440–449.
  • Chollet R, Vidal J, O’Leary MH. 1996. Phospho enol pyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Biol. 47(1):273–298.
  • Cushman JC, Bohnert HJ. 1999. Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Biol. 50(1):305–332.
  • Darabi M, Farhadi-Nejad H. 2013. Study of the 3-hydroxy-3-methylglotaryl-coenzyme A reductase (HMGR) protein in Rosaceae by bioinformatics tools. Caryologia. 66(4):351–359.
  • Darabi M, Masoudi-Nejad A, Nemat-Zadeh G. 2012. Bioinformatics study of the 3-hydroxy-3-methylglotaryl-coenzyme A reductase (HMGR) gene in Gramineae. Mol Biol Rep. 39(9):8925–8935.
  • Darabi M, Seddigh S. 2015. Bioinformatic characterization of aspartic protease (AP) enzyme in seed plants. Plant Syst Evol. 301(10):2399–2417.
  • Darabi M, Seddigh S. 2017. Computational study of biochemical properties of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) enzyme in C3 plants. J Plant Biol. 60(1):35–47.
  • Darabi M, Seddigh S, Abarshahr M. 2017. Structural, functional, and phylogenetic studies of cytochrome P450 (CYP) enzyme in seed plants by bioinformatics tools. Caryologia. 70(1):62–76.
  • Deroche ME, Carrayol E. 1988. Nodule phosphoenolpyruvate carboxylase: a review. Physiol Plant. 74(4):775–782.
  • Dong L-Y, Masuda T, Kawamura T, Hata S, Izui K. 1998. Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme. Plant Physiol. 39(8):865–873.
  • Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci. 95(25):14863–14868.
  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 300(4):1005–1016.
  • Engelmann S, Bläsing OE, Westhoff P, Svensson P. 2002. Serine 774 and amino acids 296 to 437 comprise the major C4 determinants of the C4 phosphoenolpyruvate carboxylase of Flaveria trinervia. FEBS Lett. 524(1–3):11–14.
  • Ernst K, Westhoff P. 1997. The phosphoenolpyruvate carboxylase (ppc) gene family of Flaveria trinervia (C4) and F. pringlei (C3): molecular characterization and expression analysis of the ppcB and ppcC genes. Plant Mol Biol. 34(3):427–443.
  • Fujita N, Tetsuya M, Ishijima S, Katsura I, Katsuki H. 1984. The primary structure of phosphoenolpyruvate carboxylase of Escherichia coli. Nucleotide sequence of the ppc gene and deduced amino acid sequence. J Biochem. 95(4):909–916.
  • Fumiaki K, Tsutomu K, Nobuyuki F, Katsura I, Hirohiko K. 1985. Nucleotide sequence of the phosphoenolpyruvate carboxylase gene of the cyanobacterium Anacystis nidulans. Gene. 38(1–3):265–269.
  • Furbank RT, Taylor WC. 1995. Regulation of photosynthesis in C3 and C4 plants: a molecular approach. Plant Cell. 7(7):797.
  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server. In:  Walker J.M. (eds). The proteomics protocols handbook. Humana Press; p. 571–607.
  • Gehrig H, Faist K, Kluge M. 1998a. Identification of phosphoenolpyruvate carboxylase isoforms in leaf, stem and roots of the obligate CAM plant Vanilla planifolia Salib. (Orchidaceae): a physiological and molecular approach. Plant Mol Biol. 38(6):1215–1223.
  • Gehrig H, Heute V, Kluge M. 2001. New partial sequences of phosphoenolpyruvate carboxylase as molecular phylogenetic markers. Mol Phylogen Evol. 20(2):262–274.
  • Gehrig HH, Heute V, Kluge M. 1998b. Toward a better knowledge of the molecular evolution of phosphoenolpyruvate carboxylase by comparison of partial cDNA sequences. J Mol Evol. 46(1):107–114.
  • Geourjon C, Deleage G. 1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 11(6):681–684.
  • González M-C, Sanchez R, Cejudo FJ. 2003. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta. 216(6):985–992.
  • Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GI, Nimmo HG. 1999. Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J. 20(3):333–342.
  • Hatch MD. 1987. C 4 photosynthesis: a unique elend of modified biochemistry, anatomy and ultrastructure. Biochim Et Biophys Acta (Bba)-Rev Bioenerg. 895(2):81–106.
  • Hatch MD. 1992. C4 photosynthesis: an unlikely process full of surprises. Plant Physiol. 33(4):333–342.
  • Häusler RE, Hirsch HJ, Kreuzaler F, Peterhänsel C. 2002. Overexpression of C4‐cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3‐photosynthesis J Exp Bot. 53(369):591–607.
  • Höll W. 1973. Enzyme activities in wood tissue as affected by different methods of homogenizing. Holzforschung-Int J Biol Chem Phys Technol Wood. 27(5):145–146.
  • Höll W. 1974. Dark CO2 fixation by cell-free preparations of the wood of Robinia pseudoacacia. Can J Bot. 52(4):727–734.
  • Huppe H, Turpin D. 1994. Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Biol. 45(1):577–607.
  • Ivanov AG, Krol M, Sveshnikov D, Malmberg G, Gardeström P, Hurry V, Öquist G, Huner NP. 2006. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Planta. 223(6):1165–1177.
  • Izui K, Ishijima S, Yamaguchi Y, Katagiri F, Murata T, Shigesada K, Sugiyama T, Katsuki H. 1986. Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. Nucleic Acids Res. 14(4):1615–1628.
  • Izui K,Matsumura H, Furumoto T, Kai Y. 2004. Phospho enol pyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol. 55:69–84.
  • Jefferys BR, Kelley LA, Sternberg MJ. 2010. Protein folding requires crowd control in a simulated cell. J Mol Biol. 397(5):1329–1338.
  • Kai Y, Matsumura H, Inoue T, Terada K, Nagara Y, Yoshinaga T, Kihara A, Tsumura K, Izui K. 1999. Three-dimensional structure of phosphoenolpyruvate carboxylase: a proposed mechanism for allosteric inhibition. Proc Natl Acad Sci. 96(3):823–828.
  • Kai Y, Matsumura H, Izui K. 2003. Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys. 414(2):170–179.
  • Kawamura T, Shigesada K, Yanagisawa S, Izui K. 1990. Phosphoenolpyruvate carboxylase prevalent in maize roots: isolation of a cDNA clone and its use for analyses of the gene and gene expression. J Biochem. 107(1):165–168.
  • Kelley LA, Sternberg MJ. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 4(3):363–371.
  • Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H, Toki S. 1994. Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res. 3(5):287–296.
  • Ku MS, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol. 17(1):76–80.
  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 26(2):283–291.
  • Latzko E, Kelly G. 1983. The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants [review]. Physiologie Végétale. 21:805–815.
  • Leegood RC, Osmond CB. 1990. The flux of metabolites in C4 and CAM plants.  Plant physiology, biochemistry and molecular biology, 274–298.
  • Lepiniec L, Keryer E, Philippe H, Gadal P, Crétin C. 1993. Sorghum phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution. Plant Mol Biol. 21(3):487–502.
  • Lepiniec L, Vidal J, Chollet R, Gadal P, Crétin C. 1994. Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Sci. 99(2):111–124.
  • Maiti R, Van Domselaar GH, Zhang H, Wishart DS. 2004. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32(suppl 2):W590–W594.
  • Moller S, Croning MD, Apweiler R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 17(7):646–653.
  • Morris AL, MacArthur MW, Hutchinson EG, Thornton JM. 1992. Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Bioinformatics. 12(4):345–364.
  • Nakamura T, Yoshioka I, Takahashi M, Toh H, Izui K. 1995. Cloning and sequence analysis of the gene for phosphoenolpyruvate carboxylase from an extreme thermophile, Thermus sp. J Biochem. 118(2):319–324.
  • O’Leary MH. 1982. Phosphoenolpyruvate carboxylase: an enzymologist’s view. Annu Rev Plant Physiol. 33(1):297–315.
  • O'Leary B, Park J, Plaxton WC. 2011. The remarkable diversity of plant pepc (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic pepcs. Biochem J. 436(1):15–34.
  • Outlaw WH. 1990. Kinetic properties of guard-cell phosphoenolpyruvate carboxylase. Biochemie und Physiologie der Pflanzen. 186(5):317–325.
  • Papini A, Nicosia G, Stracquadanio G, Lio P, Umeton R. 2010. Key Enzymes for the optimization of CO2 uptake and nitrogen consumption in the C3 photosynthetic carbon metabolism. J Biotechnol. 150:525–526.
  • Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 8(10):785–786.
  • Rademacher T, Häusler RE, Hirsch HJ, Zhang L, Lipka V, Weier D, Kreuzaler F, Peterhänsel C. 2002. An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J. 32(1):25–39.
  • Rajagopalan A, Devi MT, Raghavendra A. 1994. Molecular biology of C4 phosphoenolpyruvate carboxylase: structure, regulation and genetic engineering. Photosynthesis Res. 39(2):115–135.
  • Romano P, Giugno R, Pulvirenti A. 2011. Tools and collaborative environments for bioinformatics research. Brief Bioinform. 12(6):549–561.
  • Sako Y, Takai K, Uchida A, Ishida Y. 1996. Purification and characterization of phosphoenolpyruvate carboxylase from the hyperthermophilic archaeon Methanothermus sociabilis. FEBS Lett. 392(2):148–152.
  • Sánchez R, Cejudo FJ. 2003. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol. 132(2):949–957.
  • Schmitt J. 1990. Rapid concentration changes of phosphoenolpyruvate carboxylase mRNA in detached leaves of Mesembryanthemum crystallinum L. in response to wilting and rehydration. Plant, Cell Environ. 13(8):845–850.
  • Seddigh S, Darabi M. 2014. Comprehensive analysis of beta-galactosidase protein in plants based on Arabidopsis thaliana. Turkish J Biol. 38(1):140–150.
  • Seddigh S, Darabi M. 2015. Structural and phylogenetic analysis of α-glucosidase protein in insects. Biologia. 70(6):812–825.
  • Seddigh S, Darabi M. 2016. Proteomics comparison of aspartic protease enzyme in insects. Turkish J Biol. 40(1):69–83.
  • Seddigh S, Darabi M. 2018. Functional, structural, and phylogenetic analysis of mitochondrial cytochrome b (cytb) in insects. Mitochondrial DNA Part A. 29(2):236–249.
  • Sippl MJ. 1993. Recognition of errors in three‐dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics. 17(4):355–362.
  • Söding J. 2005. Protein homology detection by HMM–HMM comparison. Bioinformatics. 21(7):951–960.
  • Stiborova M. 1988. Phosphoenolpyruvate carboxylase: the key enzyme of C4-photosynthetis. Photosynthetica. 22(2):240–263.
  • Stracquadanio G, Umeton R, Papini A, Lio P, Nicosia G. 2010. Analysis and optimization of C3 photosynthetic carbon metabolism. BioInformatics and BioEngineering (BIBE), 2010 IEEE International Conference on pp. 44-51, IEEE.
  • Sugiharto B, Sugiyama T. 1992. Effects of nitrate and ammonium on gene expression of phosphoenolpyruvate carboxylase and nitrogen metabolism in maize leaf tissue during recovery from nitrogen stress. Plant Physiol. 98(4):1403–1408.
  • Sugiharto B, Suzuki I, Burnell JN, Sugiyama T. 1992. Glutamine induces the N-dependent accumulation of mRNAs encoding phosphoenolpyruvate carboxylase and carbonic anhydrase in detached maize leaf tissue. Plant Physiol. 100(4):2066–2070.
  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP. et al. 2014. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(D1):D447–D452.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729.
  • Taybi T, Sotta B, Gehrig H, Güclü S, Kluge M, Brulfert J. 1995. Differential effects of abscisic acid on phosphoenolpyruvate carboxylase and CAM operation in Kalanchoë blossfeldiana. Botanica Acta. 108(3):240–246.
  • Toh H, Kawamura T, Izui K. 1994. Molecular evolution of phosphoeno/pyruvate carboxylase. Plant, Cell Environ. 17(1):31–43.
  • Vance CP, Gregerson RG, Robinson DL, Miller SS, Gantt JS. 1994. Primary assimilation of nitrogen in alfalfa nodules: molecular features of the enzymes involved. Plant Sci. 101(1):51–64.
  • Vidal J, Chollet R. 1997. Regulatory phosphorylation of C 4 PEP carboxylase. Trends Plant Sci. 2(6):230–237.
  • Wiederstein M, Sippl MJ. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(suppl 2):W407–W410.
  • Wojcik J, Schächter V. 2000. Proteomic databases and software on the web. Brief Bioinform. 1(3):250–259.
  • Xu J, Zhang Y. 2010. How significant is a protein structure similarity with TM-score= 0.5? Bioinformatics. 26(7):889–895.
  • Yanagisawa S, Izui K, Yamaguchi Y, Shigesada K, Katsuki H. 1988. Further analysis of cDNA clones for maize phosphoenolpyruvate carboxylase involved in C4 photosynthesis Nucleotide sequence of entire open reading frame and evidence for polyadenylation of mRNA at multiple sites in vivo. FEBS Lett. 229(1):107–110.
  • Zhang Y, Skolnick J. 2004. Scoring function for automated assessment of protein structure template quality. Proteins. 57(4):702–710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.