253
Views
17
CrossRef citations to date
0
Altmetric
Part 4: Supercritical Water Oxidation, Reforming, and Biomass Applications

MODELING OXIDATION AND HYDROLYSIS REACTIONS IN SUPERCRITICAL WATER—FREE RADICAL ELEMENTARY REACTION NETWORKS AND THEIR APPLICATIONS

, , , , , & show all
Pages 363-398 | Received 01 Sep 2004, Accepted 14 Feb 2005, Published online: 25 Jan 2007

REFERENCES

  • Alkam , M. , Pai , V. , Butler , P. , and Pitz , W. ( 1996 ) Methanol and hydrogen oxidation kinetics in water at supercritical states . Combust. Flame , 106 , 110 – 130 . [CSA]
  • Anitescu , G. and Tavlarides , L.L. ( 2000 ) Oxidation of Aroclor 1248 in supercritical water: A global kinetic study . Ind. Eng. Chem. Res. , 39 , 583 – 591 . [CSA] [CROSSREF]
  • Anitescu , G. , Zhang , Z. , and Tavlarides , L.L. ( 1999 ). A kinetic study of methanol oxidation in supercritical water . Ind. Eng. Chem. Res. , 38 , 2231 – 2237 . [CSA] [CROSSREF]
  • Atkinson , R. , Baulch , D.L. , Cox , R.A. , Hampson , R.F. , Kerr , J.A. , and Troe , J. ( 1989 ) Evaluated kinetic and photochemical data for atmospheric chemistry. 3. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry . J. Phys. Chem. Ref. Data , 18 , 881 . [CSA]
  • Bates , R.W. , Golden , D.M. , Hanson , R.K. , and Bowman , C.T. ( 2001 ) Experimental study and modeling of the reaction H + O2 + M → HO2 + M(M = Ar, N2, H2O) at elevated pressures and temperatures between 1050 and 1250 K . Phys. Chem. Chem. Phys. , 3 , 2337 – 2342 . [CSA] [CROSSREF]
  • Baulch , D. , Cobos , C.J. , Cox , R.A. , Esser , C. , Frank , P. , Just , T. , Kerr , J.A. , Pilling , M. , Troe , J. , Walker , R.W. , and Warnatz , J. ( 1992 ) Evaluated kinetic data for combustion modeling . J. Phys. Chem. Ref. Data , 21 , 411 – 734 . [CSA]
  • Benson , S.W. ( 1976 ) Thermochemical Kinetics , Wiley , New York .
  • Bittker , D.A. ( 1991 ) Detailed mechanism for oxidation of benzene . Comb. Sci. Tech. , 79 , 49 . [CSA]
  • Bond , L.D. , Mills , C.C. , Whiting , P. , and Mehta , A.H. ( 1995 ) Method for supercritical water oxidation of organic compounds . PCT Int. Appl. US 94-181695 .
  • Brock , E.E. and Savage , P.E. ( 1995 ) Detailed chemical kinetics model for supercritical water oxidation of C1 compounds and H2 . AIChE J. , 41 , 1874 – 1888 . [CSA] [CROSSREF]
  • Brock , E. , Savage , P. , and Barker , J. ( 1998 ) A reduced mechanism for methanol oxidation in supercritical water . Chem. Eng. Sci. , 53 , 857 – 867 . [CSA] [CROSSREF]
  • Brock , E. , Oshima , Y. , Savage , P.E. , and Barker J.R. ( 1996 ) Kinetics and mechanism of methanol oxidation in supercritical water . J. Phys Chem. , 100 , 15834 – 15842 . [CSA] [CROSSREF]
  • Brodholt , J.P. ( 1998 ) Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures . Chemical Geology , 151 , 11 – 19 . [CSA] [CROSSREF]
  • Carpenter , B.K. ( 1993 ) Computational prediction of new mechanisms for the reactions of vinyl and phenyl radicals with molecular oxygen . J. Am. Chem. Soc. , 115 , 9806 . [CSA] [CROSSREF]
  • Chai , Y. and Pfefferle , L.D. ( 1998 ) An experimental study of benzene oxidation at fuel-lean and stoichiometric equivalence ratio conditions . Fuel , 77 , 313 – 320 . [CSA] [CROSSREF]
  • Chang , A.Y. , Bozzelli , J.W. , and Dean , A.M. (2000) Kinetic analysis of complex chemical activation and unimolecular dissociation reactions using QRRK theory and the modified strong collision assumption. Z. Phys. Chem. , 214, 1533–1568. [CSA]
  • Chase , M.W.J. , Davies , C.A. , Downey , J., J.R. , Frurip , D.J. , McDonald , R.A. , and Syverud , A.N. ( 1985a ) JANAF thermochemcial tables—3rd edition. 1. Al-Co . J. Phys. Chem. Ref. Data , 14 , 1 – 962 . [CSA]
  • Chase , M.W.J. , Davies , C.A. , Downey , J., J.R. , Frurip , D.J. , McDonald , R.A. and Syverud , A.N. ( 1985b ) JANAF thermochemical tables—3rd edition. 2. Cr-Zr . J. Phys. Chem. Ref. Data , 14 , 927 – 1856 . [CSA]
  • Cobos , C.J. , Hippler , H. , and Troe , J. ( 1985 ) High-pressure falloff curves and specific rate constants for the reactions H + O2 = HO2 = HO + O . J. Phys. Chem. , 89 , 342 – 349 . [CSA] [CROSSREF]
  • Cummings , P.T. , Cochran , H.D. , Simonson , J.M. , Mesmer , R.E. , and Karaborni , S. ( 1991 ) Simulation of supercritical water and of supercritical aqueous solutions . J. Chem. Phys. , 94 , 5606 – 5621 . [CSA] [CROSSREF]
  • Curran , H.J. , Gaffuri , P. , Pitz , W.J. , and Westbrook , C.K. ( 1998 ) A comprehensive modeling study of n-heptane oxidation . Combust. Flame , 114 , 149 – 177 . [CSA] [CROSSREF]
  • Dagaut , P. , Cathonnet , M. , and Boettner , J. ( 1996 ) Chemical kinetic modeling of the supercritical water oxidation of methanol . J. Supercrit. Fluids , 98 , 33 – 42 . [CSA] [CROSSREF]
  • DiNaro , J. , Tester , J. , Howard , J. , and Swallow , K. ( 2000a ) Experimental measurements of benzene oxidation in supercritical water . AICHE J. , 46 , 2274 – 2284 . [CSA] [CROSSREF]
  • DiNaro , J. , Howard , J. , Green , W. , Tester , J.W. , and Bozzelli , J. ( 2000b ) Elementary reaction meachnaism for benzene oxidation in supercritical water . J. Phys. Chem. A , 104 , 10576 – 10586 . [CSA] [CROSSREF]
  • Driesner , T. , Seward , T.M. , and Tironi , I.G. ( 1998 ) Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions . Geochim. Cosmochi. Acta , 62 , 3095 – 3107 . [CSA] [CROSSREF]
  • Emdee , J.L. , Brezinsky , K. , and Glassman , I. ( 1992 ) A kinetic model for the oxidation of toulene near 1200 K . J. Phys. Chem. , 96 , 2151 . [CSA] [CROSSREF]
  • Foresman , J.B. , Keith , T.A. , wiberg , K.B. , Snoonian , J. , and Frisch , M.J. ( 1996 ) Solvent effects. 5. The influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculation . J. Phys. Chem. , 100 , 16098 . [CSA] [CROSSREF]
  • Glaude , P.A. , Curran , H.J. , Pitz , W.J. , and Westbrook , C.K. ( 2000 ) Kinetic study of the combustion organophosphorus compounds . Proc. Combust. Inst. , 28 , 1749 – 1756 . [CSA]
  • Gopalan , S. and Savage , P.E. ( 1995 ) Phenol oxidation in supercritical water: From global kinetics to a detailed mechanistic model . In Hutchenson , K.W. and Foster , N.R. (Eds.) Innovations in Supercritical Fluids , American Chemical Society , Washington , DC , pp. 217 – 231 .
  • Green , W.H. ( 1994 ) Predictive chemical kinetics—Density functional and hartree-fock calculations on free-radical reaction transition states . Int. J. Quantum Chem. , 52 , 837 – 847 . [CSA] [CROSSREF]
  • Haar , L. , Gallagher , J.S. , and Kell , G.S. ( 1984 ) NBS/NRC Steam Tables , Hemisphere , New York .
  • Held , T. and Dryer , F. ( 1998 ) A comprehensive mechanism for methanol oxidation . Int. J. Chem. Kinet. , 30 , 805 – 830 . [CSA] [CROSSREF]
  • Holgate , H.R. and Tester , J.W. ( 1994 ) Oxidation of hydrogen and carbon monoxide in sub- and supercritical water: reaction kinetics, pathways, and water-density effects. 2. Elementary reaction rate modeling . J. Phys. Chem. , 98 , 810 – 822 . [CSA] [CROSSREF]
  • Hughes , K. , Turanyi , T. , Clague , A. , and Pilling , M. ( 2001 ) Development and testing of a comprehensive chemical mechanism for the oxidation of methane . Int. J. Chem. Kinet. , 33 , 513 – 538 . [CSA] [CROSSREF]
  • Ing , W.C. ( 1995 ) Reaction Kinetics of Methanol and MTBE: Oxidation and Pyrolysis. Department of Chemical Engineering , New Jersey Institute of Technology , Newark , NJ .
  • Kanda , T. , Yamamoto , S. , Aokata , T. , and Furuta , S. ( 1995 ) Oxidation treatment of hazardous organic substances with supercritical water . Jpn. Kokai Tokkyo, Koho , JP 07275870 . [CSA]
  • Kappel , C. , Luther , K. , and Troe , J. ( 2002 ) Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions . Phys. Chem. Chem. Phys. , 4 , 4392 – 4398 . [CSA] [CROSSREF]
  • Kee , R.J. , Rupley , F.M. , Meeks , E. , and Miller , J. A. ( 1996 ) Chemkin-III: A Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , Sandia National Laboratories , Livermore , CA .
  • Kieke , M.L. , Schoppelrei , J.W. , and Brill , T. B. ( 1996 ) Spectroscopy of hydrothermal reactions. 1. The CO2-H2O system and kinetics of urea decomposition in an FTIR spectroscopy flow reactor cell operable to 725 K and 335 bar . J. Phys. Chem. , 100 , 7455 – 7462 . [CSA] [CROSSREF]
  • Kim , T.J. ( 1994 ) Gas-phase Kinetic Studies of the Hydrogen-Oxygen and Carbon Monoxide-Hydrogen-Oxygen Systems , Department of Mechanical Engineering, Princeton University .
  • Korobeinichev , O.P. , Ilyin , S.B. , Boshova , T.A. , Shvartsberg , V. M. , and Chernov , A.A. ( 2000 ) The chemistry of the destruction of organophosphorus compounds in flames-III: The destruction of DMMP and TMP in a flame of hydrogen and oxygen . Combust. Flame , 121 , 593 – 609 . [CSA] [CROSSREF]
  • Krajnc , M. and Levec , J. ( 1996 ) On the kinetics of phenol oxidation in supercritical water . AIChE J. , 42 , 1977 . [CSA] [CROSSREF]
  • Lindstedt , R.P. and Skevis , G. (1994) Detailed kinetic modeling of premixed benzene flames. Combust. Flame , 99, 551. [CSA] [CROSSREF]
  • Maharrey , S. and Miller , D. ( 2001 ) A direct sampling mass spectrometer investigation of oxidation mechanisms for acetic acid in supercritical water . J. Phys. Chem. A , 105 , 5860 – 5867 . [CSA] [CROSSREF]
  • Marrone P.A. , Arias T.A. , Peters W.A. , and Tester J.W. ( 1998 ) Solvation effects on kinetics of methylene chloride reactions in sub- and supercritical water: Theory, experiment, and ab initio calculations . J. Phys. Chem. A , 102 , 7013 – 7028 . [CSA] [CROSSREF]
  • Meyer , J.C. , Marrone , P.A. , and Tester J.W. ( 1995 ) Acetic and acid oxidation and hydrolysis in supercritical water . AIChE J. , 41 , 2108 – 2121 . [CSA] [CROSSREF]
  • Michael , J.V. , Su , M.C. , Sutherland , J.W. , Carroll , J.J. , and Wagner , A.F. ( 2002 ) Rate constants for H + O2 + M → HO2 + M in seven bath gases . J. Phys. Chem. A , 106 , 5297 – 5313 . [CSA] [CROSSREF]
  • Modell , M. ( 1980 ). Processing methods for the oxidation of organics in supercritical water . US Patent No. 4,338,199 . [CSA]
  • Phenix , B.D. , DiNaro , J.L. , Tatang , M.A. , Tester , J.W. , Howard , J.B. , and McRae , G.J. ( 1998 ) Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water . Combust. Flame , 112 , 132 – 146 . [CSA] [CROSSREF]
  • Reagan , M.T. , Harris , J.G. , and Tester , J.W. ( 1999 ) Molecular simulations of dense hydrothermal NaCl-H2O solutions from subcritical to supercritical conditions . J. Phys. Chem. B , 103 , 7935 – 7941 . [CSA] [CROSSREF]
  • Rice , S.F. , Hunter , T.B. , and Rydén , Å.C. ( 1996 ) Raman spectroscopic measurement of oxidation in supercritical water. 1. Conversion of methanol to formaldehyde . Ind. Eng. Chem. Res. , 35 , 2161 – 2171 . [CSA] [CROSSREF]
  • Savage , P.E. , Gopalan , S. , Mizan , T. I. , Martino , C.J. , and Brock , E.E. ( 1995 ) Reactions at supercritical conditions: Applications and fundamentals . AIChE J. , 41 , 1723 – 1778 . [CSA] [CROSSREF]
  • Savage , P.E. , Yu , J. , Stylski , N. , and Brock , E. ( 1998 ) Kinetics and mechanism of methane oxidation in supercritical water . J. Supercrit. Fluids , 12 , 141 – 153 . [CSA] [CROSSREF]
  • Schanzenbacher , J. , Taylor , J.D. , and Tester , J.W. ( 2002 ) Ethanol oxidation and hydrolysis rates in supercritical water . J. Supercrit. Fluids. , 22 , 139 – 147 . [CSA] [CROSSREF]
  • Shandross , R.A. , Longwell , J.P. , and Howard, J.B. ( 1996 ) Destruction of Benzene in High-Temperature Flames: Chemistry of Benzene and Phenol , 26th Symposium (International) on Combustion , The Combustion Institute , Pittsburgh .
  • Sullivan , P.A. , Ploeger , J.M. , Green , W.H. , and Tester , J.W. ( 2004a ) Elementary reaction rate model for supercritical water oxidation of methylphosphonic acid . Phys. Chem. Chem. Phys. , 6 , 4310 – 4320 . [CSA] [CROSSREF]
  • Sullivan , P.A. , Sumathi , R. , Green , W. , and Tester , J.W. (2004b). Ab initio modeling of organophosphorus combustion chemistry. Phys. Chem. Chem. Phys. , 6 , 4296–4309. [CSA] [CROSSREF]
  • Sullivan , P.A. and Tester , J.W. ( 2004c ) Methylphosphonic acid oxidation kinetics in supercritical water . AIChE J. , 50 , 673 – 683 . [CSA] [CROSSREF]
  • Tatang , M.A. , Pan , W.W. , Prinn , R.G. , and Mc Rae , G.J. ( 1997 ) An efficient method for parametric uncertainty analysis of numerical geophysical models . J. Geophys. Res. , 102 , 21925 . [CSA] [CROSSREF]
  • Taylor , J.D. , Pacheco , F.A. , Steinfeld , J.I. , and Tester , J.W. ( 2002 ) Multiscale reaction pathway analysis of methyl tertbutyl ether hydrolysis under hydrothermal conditions . Ind. Eng. Chem. Res. , 41 , 1 – 8 . [CSA]
  • Tester , J.W. and Cline , J.A. ( 1999 ) Hydrolysis and oxidation in sub- and supercritical water. Connecting process engineering science to molecular interactions . Corrosion , 55 , 1088 . [CSA]
  • Thornton , T.D. and Savage , P. ( 1992 ) Kinetics of phenol oxidation in supercritical water . AIChE J , 38 , 321 – 327 . [CSA] [CROSSREF]
  • Troe , J. ( 2000 ) Detailed Modeling of the Temperature and Pressure Dependence of the Reaction H + O2(+ M) → HO2 +(+ M) . Proc. Combust. Instit. , 28 , 1463 – 1469 . [CSA]
  • Tsang , W. ( 1987 ) Chemical kinetic database for combustion chemistry. 2. methanol . J. Phys. Chem. Ref. Data , 16 , 471 – 508 . [CSA]
  • Tsang , W. and Hampson , R.F. ( 1986 ) Chemical kinetic database for combustion chemistry. 1. Methane and related compounds . J. Phys. Chem. Ref. Data , 15 , 1087 – 1279 . [CSA]
  • Vogel , F. , DiNaro Blanchard , J.L. , Marrone , P.A. , Rice , S.F. , Webley , P.A. , Peters , W.A. , Smith , K.A. , and Tester , J.W. ( 2005 ) Critical review of kinetic data for the oxidation of methanol in supercritical water . J. Supercrit. Fluid , 34 , 249 – 286 . [CSA] [CROSSREF]
  • Webley , P.A. and Tester , J.W. ( 1989 ) Fundamental kinetics of methanol oxidation in supercritical water . In Johnston , K.P. and Penninger , J.M.L. (Eds.) Supercritical Fluid Science and Technology , American Chemical Society , Washington , DC , pp. 259 – 275 .
  • Webley , P.A. and Tester , J.W. ( 1991 ) Fundamental kinetics of methane oxidation in supercritical water . Energy Fuels , 5 , 411 – 419 . [CSA] [CROSSREF]
  • Webley , P.A. , Tester. J.W. , and Holgate , H.R. ( 1991 ) Oxidation kinetics of ammonia and ammonia-methanol mixtures in supercrtical water in the temperature range 530–700°C at 246 bar . Ind. Eng. Chem. Res. , 30 , 1745 – 1754 . [CSA] [CROSSREF]
  • Wijaya , C.D. , Sumathi , R. , and Green , W.H. ( 2003 ) Thermodynamic properties and kinetic parameters for cyclic ether formation from hydroperoxyalkyl radicals . J. Phys. Chem. A , 107 , 4908 – 4920 . [CSA] [CROSSREF]
  • Xu , X. , Antal , M.J. , Jr. , and Anderson , D.G.M. (1997) Mechanism and temperature-dependent kinetics of the dehydration of tert-butyl alcohol in hot compressed liquid water. Ind. Eng. Chem. Res. , 36, 23. [CSA] [CROSSREF]
  • Yetter , R.A. , Dryer , F.L. , and Rabitz , H. ( 1991 ) A comprehensive reaction-mechanism for carbon monoxide hydrogen oxygen kinetics . Comb. Sci. Tech. , 79 , 97 – 128 . [CSA]
  • Yu , T. and Lin , M.C. ( 1994 ) Kinetics of the C6H5 + O2 reaction at low temperature . J. Am. Chem. Soc. , 116 , 9571 . [CSA] [CROSSREF]
  • Zhang , H.Y. and McKinnon , J.T. ( 1995 ) Elementary reaction rate modeling of high-temperature benzene combustion . Comb. Sci. Tech. , 107 , 261 . [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.