264
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

A Shock-Tube and Modeling Study of Soot Formation During Pyrolysis of Propane, Propane/Toluene and Rich Propane/Oxygen Mixtures

, &
Pages 1645-1671 | Received 14 Oct 2009, Accepted 02 Apr 2010, Published online: 27 Oct 2010

REFERENCES

  • Agafonov , G.L. , Borisov , A.A. , Smirnov , V.N. , Troshin , K.Y. , Vlasov , P.A. , and Warnatz , J. 2008 . Soot formation during pyrolysis of methane and rich methane/oxygen mixtures behind reflected shock waves . Combust. Sci. Technol. , 180 , 1876 – 1899 .
  • Agafonov , G.L. , Naydenova , I. , Vlasov , P.A. , and Warnatz , J. 2007 . Detailed kinetic modeling of soot formation in shock tube pyrolysis and oxidation of toluene and n-heptane . Proc. Combust. Instit. , 31 , 575 – 583 .
  • Alkemade , U. , and Homann , K.-H. 1989 . Formation of C6H6 isomers by recombination of propynyl in the system sodium vapour/propynylhalide . Zeitsch. Physikal. Chem. Neue Folge , 161 , 19 – 34 .
  • Appel , J. , Bockhorn , H. , and Frenklach , M. 2000 . Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons . Combust. Flame , 121 , 122 – 136 .
  • Bachmann , M. , Wiese , W. , and Homann , K.-H. 1996 . PAH and aromers: Nuclei of fullerenes and soot . Proc. Combust. Instit. , 26 , 2259 – 2267 .
  • Böhm , H. , Jander , H. , and Tanke , D. 1998 . PAH growth and soot formation in the pyrolysis of acetylene and benzene at high temperatures and pressures: Modeling and experiment . Proc. Combust. Instit. , 27 , 1605 – 1612 .
  • Ciajolo , A. , Barbella , R. , Tregrossi , A. , and Bonfanti , L. 1998 . Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame . Proc. Combust. Instit. , 27 , 1481 – 1487 .
  • Cool , T.A. , Nakajima , K. , Taatjes , C.A. , Mcllroy , A. , Westmoreland , P.R. , Law , M.E. , and Morel , A. 2005 . Studies of a fuel-rich propane flame with photoionization mass spectrometry . Proc. Combust. Instit. , 30 , 1681 – 1688 .
  • D'Alessio , A. , D'Anna , A. , Minutolo , P. , Sgro , L.A. , and Violi , A. 2000 . On the relevance of surface growth in soot formation in premixed flames . Proc. Combust. Instit. , 28 , 2547 – 2554 .
  • D'Anna , A. , Violi , A. , D'Alessio , A. , and Sarofim , A.F. 2001 . A reaction pathway for nanoparticle formation in rich premixed flames . Combust. Flame , 127 , 1995 – 2003 .
  • Deuflhard , P. , and Wulkow , M. 1989 . Computational treatment of polyreaction kinetics by orthogonal polynomials of a discrete variable . Impact Comput. Sci. Eng. , 1 , 269 – 301 .
  • Fairlie , R. , Griffiths , J.F. , Hughes , K.J. , and Pearlman , H. 2005 . Cool flames in space: Experimental and numerical studies of propane combustion . Proc. Combust. Instit. , 30 , 1057 – 1064 .
  • Feron , O. , Langlais , F. , and Naslain , R. 1999 . Analysis of the gas phase by in situ FTIR spectrometry and mass spectrometry during the CVD of pyrocarbon from propane . Chemical Vapor Deposition , 5 , 37 – 47 .
  • Frenklach , M. 2002 . Reaction mechanism of soot formation in flames . Phys. Chem. Chem. Phys. , 4 , 2028 – 2037 .
  • Frenklach , M. , Clary , D.W. , Gardiner , W.C. Jr. , and Stein , S.E. 1984 . Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene . Proc. Combust. Inst. , 20 , 887 – 901 .
  • Frenklach , M. , Clary , D.W. , Yuan , T. , Gardiner , W.C. Jr. , and Stein , S.E. 1986 . Mechanism of soot formation in acetylene-oxygen mixtures . Combust. Sci. Technol. , 50 , 79 – 115 .
  • Frenklach , M. , and Wang , H. 1991 . Detailed modeling of soot particle nucleation and growth . Proc. Combust. Instit. , 23 , 1559 – 1566 .
  • Frenklach , M. , and Wang , H. 1994 . Detailed mechanism and modeling of soot particle formation . In Bockhorm , H. (Ed.) , Soot formation in combustion (pp. 162 – 192 ). Springer-Verlag , Berlin .
  • Frenklach , M. , and Warnatz , J. 1987 . Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame . Combust. Sci. Technol. , 51 , 265 – 283 .
  • Gaydon , A.G. , and Hurle , I.R. 1963. The Shock Tube in High-Temperature Chemical Physics . Chapman and Hall , London.
  • Grieco , W.J. , Lafleur , A.L. , Swallow , K.C. , Richter , H. , Taghizadeh , K. , and Howard , J.B. 1998 . Fullerenes and PAH in low-pressure premixed benzene/oxygen flames . Proc. Combust. Instit. , 27 , 1669 – 1675 .
  • Harris , S.J. , and Weiner , A.M. ( 1983 ). Surface growth of soot particles in premixed ethylene/air flames . Combust. Sci. Technol. , 31 , 155 – 167 .
  • Hidaka , Y. , Nakamura , T. , Tanaka , H. , Inami , K. , and Kawano , H. 1990 . High temperature pyrolysis of methane in shock waves. Rates for dissociative recombination reactions of methyl radicals and for propyne formation reaction . Inter. J. Chem. Kinet. , 22 , 701 – 709 .
  • Horn , C. , and Frank , P. 1997 . High temperature pyrolysis of phenol . Proc. 4th Int. Conf. on Chemical Kinetics , NIST, July 14–18, 1997, Gaithersburg, MD .
  • Huang , J. , and Bushe , W.K. 2006 . Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions . Combust. Flame , 144 , 74 – 88 .
  • Hwang , J.Y. , Chung , S.H. , and Lee , W. 1998 . Effects of oxygen and propane addition on soot formation in counterflow ethylene flames and the role of C3 chemistry . Proc. Combust. Instit. , 27 , 1531 – 1538 .
  • Keller , A. , Kovacs , R. , and Homann , K.-H. 2000 . Large molecules, ions, radicals and small soot particles in fuel-rich hydrocarbon flames. Part IV. Large polycyclic aromatic hydrocarbons and their radicals in a fuel-rich benzene-oxygen flame . Phys. Chem. Chem. Phys. , 2 , 1667 – 1675 .
  • Kim , K. , and Shin , K.S. 2001 . Shock tube and modeling study of the ignition of propane . Bull. Korean Chem. Soc. , 22 , 303 – 307 .
  • Knorre , V.G. , Tanke , D. , Thienel , T. , and Wagner , H.G. 1996 . Soot formation in the pyrolysis of benzene/acetylene and acetylene/hydrogen mixtures at high carbon concentrations . Proc. Combust. Instit. , 26 , 2303 – 2310 .
  • Koert , D.N. , Pitz , W.J. , Bozzelli , J.W. , and Cernansky , N.P. 1996 . Chemical kinetic modeling of high-pressure propane oxidation and comparison to experimental results . Proc. Combust. Instit. , 26 , 633 – 640 .
  • Lifshitz , A. , and Frenklach , M. 1975 . Mechanism of the high temperature decomposition of propane . The Journal of Physical Chemistry , 79 , 686 – 692 .
  • McKinnon , J.T. , and Howard , J.B. 1992 . The roles of PAH and acetylene in soot nucleation and growth . Proc. Combust. Instit. , 24 , 965 – 971 .
  • Mehta , R.S. , Haworth , D.C. , and Modest , M.F. 2009 . An assessment of gas-phase reaction mechanisms and soot models for laminar atmospheric-pressure ethylene–air flames . Proc. Combust. Instit. , 32 , 1327 – 1334 .
  • Melius , C.F. , Colvin , M.E. , Marinov , N.M. , Pitz , W.J. , and Senkan , S.M. 1996 . Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety . Proc. Combust. Instit. , 26 , 685 – 692 .
  • Miller , J.A. , and Melius , C.F. 1992 . Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels . Combust. Flame , 91 , 21 – 39 .
  • Minutolo , P. , Gambi , G. , and D'Alessio , A. 1998 . Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit . Proc. Combust. Instit. , 27 , 1461 – 1469 .
  • Naydenova , I. , Nullmeier , M. , Warnatz , J. , and Vlasov , P.A. 2004 . Detailed kinetic modeling of soot formation during shock tube pyrolysis of C6H6: Direct comparison with the results of time-resolved laser-induced incandescence (LII) and CW-laser-extinction measurements . Combust. Sci. Technol. , 176 , 1667 – 1703 .
  • Oehlschlaeger , M.A. 2005 . Shock tube studies of thermal decomposition reactions using ultraviolet absorption spectroscopy . Report No. TSD-160 .
  • Oehlschlaeger , M.A. , Davidson , D.F. , and Hanson , R.K. 2005. High-temperature ethane and propane decomposition. Proc. Combust. Instit. , 30, 1119–1127.
  • Öktem , B. , Tolocka , M.P. , Zhao , B. , Wang , H. , and Johnston , M.V. 2005 . Chemical species associated with the early stage of soot growth in a laminar premixed ethylene–oxygen–argon flame . Combust. Flame , 142 , 364 – 373 .
  • Penyazkov , O.G. , Ragotner , K.A. , Dean , A.J. , and Varatharajan , B. 2005 . Autoignition of propane–air mixtures behind reflected shock waves . Proc. Combust. Instit. , 30 , 1941 – 1947 .
  • Petersen , E.L. 1998 . A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition. Doctoral dissertation, Stanford University .
  • Petersen , E.L. , Kalitan , D.M. , Simmons , S. , Bourque , G. , Curran , H.J. , and Simmie , J.M. 2007 . Methane/propane oxidation at high pressures: Experimental and detailed chemical kinetic modeling . Proc. Combust. Instit. , 31 , 447 – 454 .
  • Petrova , M.V. , and Williams , F.A. ( 2007 ). Reduced chemistry for autoignition of C3 hydrocarbons in air . Combust. Sci. Technol. , 179 ( 5 ), 961 – 986 .
  • Qin , Z. 1998 . Reaction mechanism of propane oxidation. Doctoral dissertation, The University of Texas at Austin .
  • Qin , Z. , Lissianski , V.V. , Yang , H. , Gardiner , W.C. , Davis , S.G. , and Wang , H. 2000 . Combustion chemistry of propane: A case study of detailed reaction mechanism optimization . Proc. Combust. Instit. , 28 , 1663 – 1669 .
  • Richter , H. , Granata , S. , Green , W.H. , and Howard , J.B. 2005 . Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame . Proc. Combust. Instit. , 30 , 1397 – 1405 .
  • Richter , H. , and Howard , J.B. 2002 . Formation and consumption of single-ring aromatic hydrocarbons and their nuclei in premixed acetylene, ethylene and benzene flames . Phys. Chem. Chem. Phys. , 4 , 2038 – 2055 .
  • Scherer , S. 2001 . Untersuchung pyrolytischer Reaktionen des Ruβvorläufermoleküls Propargyl im Stoβwellenrohr (Shock tube investigations on pyrolytic reactions of the soot precursor propargyl). Doctoral dissertation, Universität Stuttgart, Institut für Physikalische Chemie der Verbrennung des DLR in Stuttgart .
  • Schuetz , C.A. , and Frenklach , M. 2002 . Nucleation of soot: Molecular dynamics simulations of pyrene dimerization . Proc. Combust. Instit. , 29 , 2307 – 2314 .
  • Schulz , C. , Kock , B.F. , Hofmann , M. , Michelsen , H.A. , Will , S. , Bougie , B. , Suntz , R. , and Smallwood , G.J. 2006 . Laser-induced incandescence: Recent trends and current questions . Appl. Phys. B , 83 , 333 – 354 .
  • Seery , D.J. , and Bowman , C.T. 1970 . An experimental and analytical study of methane oxidation behind shock waves . Combust. Flame , 14 , 37 – 48 .
  • Stupochenko , Y.V. , Losev , S.A. , and Osipov , A.I. 1967 . Relaxation in Shock Waves . Springer-Verlag , New York .
  • Sung , C.J. , Li , B. , Wang , H. , and Law , C.K. 1998 . Structure and sooting limits in counterflow methane/air and propane/air diffusion flames from 1 to 5 atmospheres . Proc. Combust. Instit. , 27 , 1523 – 1529 .
  • Tanke , D. 1995 . Ruβbildung in der Kohlenwasserstoffpyrolyse hinter Stoβwellen (Soot formation during the pyrolysis of hydrocarbons in shock waves). Doctoral dissertation, Universität Göttingen .
  • Van de Hulst , H.C. 1981 . Light scattering by Small Particles . Dover , New York .
  • Vasudevan , V. , Davidson , D.F. , and Hanson , R.K. 2005 . Shock tube measurements of toluene ignition times and OH concentration time histories . Proc. Combust. Instit. , 30 , 1155 – 1163 .
  • Violi , A. 2004 . Modeling of soot particle inception in aromatic and aliphatic premixed flames . Combust. Flame , 139 , 279 – 287 .
  • Violi , A. , Sarofim , A.F. , and Voth , G.A. 2004. Kinetic Monte Carlo-molecular dynamics approach to model soot inception. Combust. Sci. Tech. , 176, 991–1005.
  • Vlasov , P.A. , Karasevich , Y.K. , and Smirnov , V.N. 2004 . Kinetics of thermal decomposition and oxidation of soot particles in shock waves . Kinet. Catal. , 45 , 628 – 633 .
  • Vlasov , P.A. , and Warnatz , J. 2002 . Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves . Proc. Combust. Instit. , 29 , 2335 – 2341 .
  • Wang , H. , and Frenklach , M. 1997 . A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames . Combust. Flame , 110 , 173 – 221 .
  • Weilmünster , P. , Keller , A. , and Homann , K.-H. 1999 . Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames Part I: Positive ions of polycyclic aromatic hydrocarbons (PAH) in low-pressure premixed flames of acetylene and oxygen . Combust. Flame , 116 , 62 – 83 .
  • Wilk , R.D. , Cernansky , N.P. , and Cohen , R.S. 1986 . The oxidation of propane at low and transition temperatures . Combust. Sci. Tech. , 49 , 41 – 78 .
  • Yoon , S.S. , Lee , S.M. , and Chung , S.H. 2005 . Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylene-base counterflow diffusion flames . Proc. Combust. Instit. , 30 , 1417 – 1424 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.