289
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of the Vibrational Excitation of Molecules on the Shock-Induced Combustion in a Syngas-Air Mixture

, &
Pages 75-103 | Received 02 Apr 2010, Accepted 18 Jun 2010, Published online: 24 Nov 2010

REFERENCES

  • Balakrishnan , N. 2004 . On the role of vibrationally excited H2 as a source of OH in the mesosphere . Geophys. Res. Lett. , 31 , L04106 .
  • Basov , N.G. , Danilychev , V.A. , and Dolgikh , V.A. 1986 . Limiting energy input to hydrogen and VV-processes significance . Sov. J. Quant. Electron. , 13 , 1161 – 1168 .
  • Baulch , D.L. , Bowman , C.T. , Cobos , C.J. , Cox , R.A. , Just , T. , Kerr , J.A. , Pilling , M.J. , Stocker , D. , Troe , J. , Tsang , W. , Walker , R.W. , and Warnatz , J. 2005 . Evaluated kinetic data for combustion modelling . J. Phys. Chem. Ref. Data , 34 , 757 – 1397 .
  • Berglund , M. , and Fureby , C. 2007 . LES of supersonic combustion in a scramjet engine model . Proc. Combust. Instit. , 31 , 2497 – 2504 .
  • Bezgin , L. , Ganzhelo , A. , Gouskov , O. , Kopchenov , V. , and Yarunov , Y. 1999 . Some estimations of a possibility to utilize shock-induced combustion in propulsion systems . In Roy , G.D. (Ed.) Gaseous and Heterogeneous Detonations: Science to Applications , ENAS , Moscow , pp. 285 – 300 .
  • Bezgin , L.V. , Kopchenov , V.I. , Starik , A.M. , and Titova , N.S. 2006 . Numerical study of a detonation wave in a supersonic flow over a wedge by an H2-O2 mixture with nonequilibrium excitation of molecular vibrations . Comb. Explos. Shock Waves , 42 , 68 – 75 .
  • Chaos , M. , and Dryer , F.L. 2008 . Syngas combustion kinetics and applications . Combust. Sci. and Tech. , 180 , 1053 – 1096 .
  • Chernyi , G.G. , and Losev , S.A. 1999 . Development of heat-shielding systems for interplanetary flights. ISTC project 036–96 Tech. Report, Institute of Mechanics, Moscow State University.
  • Chernyi , G.G. , Losev , S.A. , Macheret , S.O. , and Potapkin , B.V. 2002 . Physical and chemical processes in gas dynamics: cross sections and rate constants. Progress in Astronaut. Aeronaut, Reston, VA, AIAA-02–196.
  • Chinitz , W. 1996 . On the use of shock induced combustion in hypersonic engines. AIAA-96–4536.
  • Daiber , J. , Thompson , H. , and Falk , T. 1976 . The efficiency of CO vibrational excitation in a self-sustained CW glow discharge . IEEE J. Quantum. Electron. , 12 , 686 – 693 .
  • Davis , S.G. , Joshi , A.V. , Wang , H. , and Egolfopoulos , F. 2005 . An optimized kinetic model of H2/CO combustion . Proc. Combust. Inst. , 30 , 1283 – 1292 .
  • Dean , A.M. , Steiner , D.C. , and Wang , E.E. 1978 . Shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar systems . Combust. Flame , 32 , 73 – 83 .
  • Figueira Da Silva , L.F. , and Deshaies , B. 2000 . Stabilization of an oblique detonation wave by wedge: a parametric numerical study . Combust. Flame , 121 , 152 – 166 .
  • Gordiets , B.F. , Ferreira , C.M. , Guerra , V.L. , Loureiro , J. , Nahorny , J. , Pagnon , D. , Touzeau , M. , and Vialle , M. 1995 . Kinetic model of a low-pressure N2-O2 flowing glow discharge . IEEE T. Plasma. Sci. , 23 , 750 – 768 .
  • Hassan , M.I. , Aung , K.T. , and Faeth , G.M. 1997 . Properties of laminar premixed CO/H2/air flames at various pressures . J. Prop. Power , 13 , 239 – 245 .
  • Ionin , A.A. , Sinitsyn , D.V. , Terekhov , Y.V. , Kochetov , I.V. , Napartovich , A.P. , and Starostin , S.A. 2005 . Effect of the vibrational excitation of CO molecules on the parameters of an RF discharge . Plasma Phys. Rep. , 31 , 786 – 794 .
  • Kee , R.J. , Rupley , F.M. , Miller , J.A. , Coltrin , M.E. , Gracar , J.F. , et al. . 2004 . CHEMKIN Release 4.0 , Reaction Design, Inc. , San Diego , CA .
  • Kumaran , K. , and Babu , V. 2009 . Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen . Combust. Flame , 156 , 826 – 841 .
  • Kuznetsov , N.M. 1982 . Kinetics of Monomolecular Reactions , Nauka , Moscow .
  • Li , J. , Zhao , Z. , Kazakov , A. , Chaos , M. , Dryer , F.L. , and Scire , J.J. 2007. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int. J. Chem. Kinet. , 39, 109–136.
  • Lifshitz , A. , and Teitelbaum , H. 1997 . The unusual effect of reagent vibrational excitation on the rates of endothermic and exothermic elementary combustion reactions . Chem. Phys. , 219 , 243 – 256 .
  • Light , G.C. 1978 . The effect of vibrational excitation on the reaction of O(3 P) with H2 and the distribution of vibrational energy in the product OH . J. Chem. Phys. , 68 , 2831 – 2843 .
  • Losev , S. , Sergievskaya , A. , Starik , A.M. , and Titova , N.S. 1997 . Modeling of thermal nonequilibrium multicomponent kinetics in gasdynamics and combustion. AIAA-97–0623.
  • Lukhovitskii , B.I. , Starik , A.M. , and Titova , N.S. 2008 . Thermally nonequilibrium processes occurring during the ignition of hydrocarbon–air mixtures behind shock waves . Russ. J. Phys. Chem. B. , 2 , 722 – 731 .
  • Macheret , S.O. , Rusanov , V.D. , and Fridman , A.A. 1984 . On the reactivity of vibrationally excited molecules . Sov. Phys.-Doclady , 276 , 522 – 525 .
  • Michael , J.V. , Sutherland , J.W. , Harding , L.B. , and Wagner , A.F. 2000 . Initiation in H2/O2: rate constants for H2 + O2 → H + HO2 at high temperature . Proc. Combust. Instit. , 28 , 1471 – 1478 .
  • Mick , H.J. , Burmeister , M. , and Roth , P. 1993 . Atomic resonance absorption spectroscopy measurements on high-temperature CO dissociation kinetics . AIAA J. , 31 , 671 – 676 .
  • Mueller , M.A. , Kim , T.J. , Yetter , R.A. , and Dryer , F.L. 1999 . Flow reactor studies and kinetic modeling of the H2/O2 reaction . Int. J. Chem. Kinet. , 31 , 113 – 125 .
  • Natarajan , J. , Lieuwen , T. , and Seitzman , J. 2007 . Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure . Combust. Flame , 151 , 104 – 119 .
  • Pirraglia , A.N. , Michael , J.V. , Sutherland , J.W. , and Klemm , R.B. 1989 . Rate coefficient of the O + H2 = OH + H reaction determined via shock tube-laser absorption spectroscopy . J. Phys. Chem. , 93 , 282 – 291 .
  • Starik , A.M. , Kuleshov , P.S. , and Titova , N.S. 2009a . Comprehensive analysis of combustion initiation in methane-air mixture by resonance laser radiation . J. Phys. D.: Appl. Phys. , 42 , 175503 .
  • Starik , A.M. , Lukhovitskii , B.I. , and Titova , N.S. 2005 . Initiation of combustion in a supersonic hydrogen-air mixture flow by CO2-laser radiation . Fluid Dynamics , 40 , 305 – 314 .
  • Starik , A.M. , Lukhovitskii , B.I. , and Titova , N.S. 2007 . Mechanism of the initiation of combustion in CH4(C2H2)/air/O3 mixtures by laser excitation of the O3 molecules . Kinet. Catal. , 48 , 348 – 366 .
  • Starik , A.M. , and Titova , N.S. 1999 . Effects of thermal nonequilibrium in combustion. AIAA-99–3637.
  • Starik , A.M. , and Titova , N.S. 2001 . Kinetic mechanisms for the initiation of supersonic combustion of a hydrogen–air mixture behind a shock wave under the excitation of molecular vibrations in initial reagents . Tech. Phys. , 46 , 929 – 940 .
  • Starik , A.M. , Titova , N.S. , Bezgin , L.V. , and Kopchenov , V.I. 2009b . The promotion of ignition in a supersonic H2-air mixing layer by laser-induced excitation of O2 molecules: Numerical study . Combust. Flame , 156 , 1641 – 1652 .
  • Starik , A.M. , Titova , N.S. , and Sharipov , A.S. 2010 . Kinetic mechanism of H2-O2 ignition promoted by singlet oxygen O2(a 1Δ g ) . In Roy , G.D. and Frolov , S.M. (Eds.) Deflagrative and Detonative Combustion , Torus Press , Moscow , pp. 19 – 42 .
  • Sun , H. , Yang , S.I. , Jomaas , G. , and Law , C.K. 2007 . High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion . Proc. Combust. Inst. , 31 , 439 – 446 .
  • Yetter , R.A. , Dryer , F.L. , and Rabitz , H. 1991. Flow reactor studies of carbon monoxide/hydrogen/oxygen kinetics. Combust. Sci. Technol. , 79, 129–140.
  • Yu , G. , Li , J.G. , Zhao , J.R. , Yue , L.J. , Chang , X.Y. , and Sung , C.J. 2005 . An experimental study of kerosene combustion in a supersonic model combustor using effervescent atomization . Proc. Combust. Instit. , 30 , 2859 – 2866 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.