303
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Prediction Ability of Detailed Reaction Mechanisms in the Combustion Performance in Hydrogen/Air Supersonic Flows

, , , &
Pages 62-94 | Received 01 Feb 2012, Accepted 03 Jul 2012, Published online: 16 Jan 2013

REFERENCES

  • Anderson , D.A. , Tannehill , J.C. , and Pletcher , R.H. 1984 . Computational Fluid Mechanics and Heat Transfer , Hemisphere , New York .
  • Asaba , T. , Gardiner , W.C. , and Stubbeman , R.F. 1965 . Shock-tube study of the hydrogen-oxygen reaction . Symp. (Int.) Combustion , 10 , 295 – 302 .
  • Baulch , D.L. , Bowman , C.T. , Cobos , C.J. , Cox , R.A. , Just , T. , Kerr , J.A. , Pilling , M.J. , Stocker , D. , Troe , J. , Tsang , W. , Walker , R.W. , and Warnatz , J. 2005 . Evaluated kinetic data for combustion modeling . J. Phys. Chem. Ref. Data , 34 , 757 – 1397 .
  • Berglund , M. , and Fureby , C. 2007 . LES of supersonic combustion in a scramjet engine model . Proc. Combust. Inst. , 31 , 2497 – 2504 .
  • Berglund , M. , Fedina , E. , Fureby , C. , Tegner , J. , and Sabel'nikov , V. 2010 . Finite rate chemistry large-eddy simulation of self-Ignition in a supersonic combustion ramjet . AIAA J. , 48 , 540 – 550 .
  • Bezgin , L. , Ganzhelo , A. , Gouskov , O. , Kopchenov , V. , Laskin , I. , and Lomkov , K. 1995 . Numerical simulation of supersonic flows applied to scramjet duct. ISABE 95-7082, American Institute of Aeronautics and Astronautics, Reston, VA, pp. 895–905.
  • Bhaskaran , K.A. , Gupta , M.C. , and Just , T. 1973 . Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydrogen-air mixtures . Combust. Flame , 21 , 45 – 48 .
  • Boivin , P. , Sánchez , A.L. , and Williams , F.A. 2012 . Explicit analytic prediction for hydrogen–oxygen ignition times at temperatures below crossover . Combust. Flame , 159 , 748 – 752 .
  • Borrell , P. , and Richards , D.S.J. 1989 . Quenching of singlet molecular oxygen, O2(a 1Δ g ) and O2( ), by H2, D2, HCl and HBr . J. Chem. Soc., Faraday Trans. 2 , 85 , 1401 – 1411 .
  • Bouchez , M. , Perillat , V. , Avrashkov , V. , and Kopchenov , V. 2011 . Numerical and experimental scientific investigation of combustion in a translating cowl dual-mode ramjet. AIAA Paper 2011–313.
  • Burke , M.P. , Chaos , M. , Dryer , F.L. , and Ju , Y. 2010 . Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames at low flame temperatures . Combust. Flame , 157 , 618 – 631 .
  • Craig , R.R. 1966 . A shock tube study of the ignition delay of hydrogen-air mixtures near the second explosion limit. Technical Report AFAPL-TR-66–74, Air Force Aero-Propulsion Lab, Wright-Patterson Air Force Base.
  • Dautov , N.G. , and Starik , A.M. 1993 . On the problem of choosing the kinetic scheme for description of detonation in H2-air mixture behind shock waves . High Temp. , 31 , 253 – 262 .
  • del Álamo , G. , Williams , F.A. , and Sánchez , A.L. 2004 . Hydrogen-oxygen induction times above crossover temperatures . Combust. Sci. Technol. , 176 ( 10 ), 1599 – 1626 .
  • Dougherty , E.P. , and Rabitz , H. 1980. Computational kinetics and sensitivity analysis of hydrogen–oxygen combustion. J. Chem. Phys. , 72, 6571–6586.
  • Evans , J.S. , Schexnayder , C.J. , and Beach , C.J. 1978 . Application of two-dimensional parabolic computer program to prediction of turbulent reacting flows. NASA Technical Paper 1169.
  • Filatov , M. , Reckien , W. , Peyerimhoff , S.D. , and Shaik , S. 2000 . What are the reasons for the kinetic stability of a mixture of H2 and O2? J. Phys. Chem. A , 104 , 12014 – 12020 .
  • Friswell , N.J. , and Sutton , M.M. 1972 . Radical recombination reactions in H2/O2/N2 flames: Participation of the HO2 radical . Chem. Phys. Lett. , 15 , 108 – 112 .
  • Gay , A. , and Pratt , N.H. 1971 . Hydrogen-oxygen recombination measurements in a shock tube steady expansion . Symp. Int. Shock Tubes Waves , 8 , 39/1 –39/12.
  • Godunov , S.K. , Zabrodin , A.V. , Ivanov , A.V. , Kraiko , A.V. , and Prokopov , G.P. 1976 . Numerical Solution of Multi-Dimensional Gas Dynamics Problems , Nauka , Moscow (Russian edition) .
  • Goodings , J.M. , and Hayhurst , A.N. 1988 . Heat release and radical recombination in premixed fuel-lean flames of H2 + O2 + N2. Rate constants for H + OH + M→H2O + M and HO2 + OH → H2O + O2 . J. Chem. Soc., Faraday Trans. , 84 , 745 – 762 .
  • Gurvich , L.V. , Veyts , I.V. , and Alcock , C.B. 1989 . Thermodynamics Properties of Individual Substances , Hemisphere Pub. Co. , New York .
  • Hack , W. , and Kurzke , H. 1986 . Kinetic study of the elementary chemical reaction H(2S1/2) + O2(1Δ g ) →  OH(2Π) + O(3P) in the gas phase . J. Phys. Chem. , 90 , 1900 – 1906 .
  • Herbon , J.T. , Hanson , R.K. , Golden , D.M. , and Bowman , C.T. 2002 . A shock tube study of the enthalpy of formation of OH . Proc. Combust. Inst. , 29 , 1201 – 1208 .
  • Hitch , B.D. , and Senser , D.W. 1988 . Reduced H2/O2 mechanisms for use in reacting flow simulation. AIAA Paper 88-0732.
  • Hong , Z. , Davidson , D.F. , Barbour , E.A. , and Hanson , R.K. 2011a . A new shock tube study of the H + O2 → OH + O reaction rate using tunable diode laser absorption of H2O near 2.5 µm . Proc. Combust. Inst. , 33 , 309 – 316 .
  • Hong , Z. , Davidson , D.F. , and Hanson , R.K. 2011b . An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements . Combust. Flame , 158 , 633 – 644 .
  • Jachimovski , C.J. 1988 . An analytical study of the hydrogen–air mechanism with application to scramjet combustion. NASA Technical Paper 2791. Rep.
  • Javoy , S. , Naudet , V. , Abid , S. , and Paillard , C.E. 2003 . Elementary reaction kinetics studies of interest in H2 supersonic combustion chemistry . Exp. Therm. Fluid Sci. , 27 , 371 – 377 .
  • Just , T. , and Schmalz , F. 1968 . Measurements of ignition delays of hydrogen–air mixtures under simulated conditions of supersonic combustion chambers. AGARD Conference Proceedings, No. 34, Part 2, Paper 19.
  • Kee , R.J. , Rupley , F.M. , Miller , J.A. , Coltrin , M.E. , Grcar , J.F. , Meeks , E. , Moffat , H.K. , Lutz , A.E. , Dixon-Lewis , G. , and Smooke , M.D. 2004 . CHEMKIN Release 4.0, Reaction Design, Inc., San Diego, CA.
  • Konnov , A.A. 2003 . Refinement of the kinetic mechanism of hydrogen combustion . In Roy , G.D. , Frolov , S.M. , and Starik , A.M. (Eds.) Combustion and Atmospheric Pollution , Torus Press , Moscow , pp. 35 – 40 .
  • Konnov , A.A. 2008 . Remaining uncertainties in the kinetic mechanism of hydrogen combustion . Combust. Flame , 152 , 507 – 528 .
  • Kozlov , V.E. , Sekundov , A.N. , and Smirnova , I.P. 1986 . Models of turbulence for the description of a flow in a jet of compressible gas . Fluid Dyn. , 21 , 875 – 881 .
  • Kumaran , K. , and Babu , V. 2009 . Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen . Combust. Flame , 156 , 826 – 841 .
  • Kushida , R. 1962. The reaction of hydrogen and oxygen at high temperature. National Engineering Science Company, Air Force Contract No. AF3396160–8606.
  • Li , J. , Zhao , Z. , Kazakov , A. , Chaos , M. , Dryer , F.L. , and Scire , J.J. 2007 . A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion . Int. J. Chem. Kinet. , 39 , 109 – 136 .
  • Li , J. , Zhao , Z. , Kazakov , A. , and Dryer , F.L. 2004 . An updated comprehensive kinetic model of hydrogen combustion . Int. J. Chem. Kinet. , 36 , 566 – 575 .
  • Libby , P.A. , and Williams , F.A. 1980 . Fundamental aspects . In Libby , P.A. , and Williams , P.A. (Eds.) Turbulent Reacting Flows , Heidelberg/Springer , Berlin .
  • MacClinton , C.R. 2007 . High speed/hypersonic aircraft propulsion technology development. RTO-AVT-VKI Lecture Series. In Advances in Propulsion Technology for High-Speed Aircraft Proceedings. Von Karman Institute, St. Genesius-Rode, Belgium, March 12–15.
  • Masten , D.A. , Hanson , R.K. , and Bowman , C.T. 1990 . Shock tube study of the reaction H + O2 → OH + O using OH laser absorption . J. Phys. Chem. , 94 , 7119 – 7128 .
  • McGuire , J.R. , Boyce , R.R. , and Mudford , N.R. 2008 . Radical-farm ignition processes in two-dimensional supersonic combustion . J. Propul. Power , 24 , 1248 – 1257 .
  • Michael , J.V. , Sutherland , J.W. , Harding , L.B. , and Wagner , A.F. 2000 . Initiation in H2/O2: Rate constants for H2 + O2 → H + HO2 at high temperature . Proc. Combust. Inst. , 28 , 1471 – 1478 .
  • Mousavipour , S.H. , and Saheb , V. 2007 . Theoretical study on the kinetic and mechanism of H + HO2 reaction . Bull. Chem. Soc. Jpn. , 80 , 1901 – 1913 .
  • Mueller , M.A. , Kim , T.J. , Yetter , R.A. , and Dryer , F.L. 1999 . Flow reactor studies and kinetic modeling of the H2/O2 reaction . Int. J. Chem. Kinet. , 31 , 113 – 125 .
  • NIST Chemical Kinetics Database. Standard Reference Database 17, Version 7.0 (Web Version), Release 1.5 (accessed November 1, 12) .
  • O'Conaire , M. , Curran , H.J. , Simmie , J.M. , Pitz , W.J. , and Westbrook , C.K. 2004 . A comprehensive modeling study of hydrogen oxidation . Int. J. Chem. Kinet. , 36 , 603 – 622 .
  • Pirraglia , A.N. , Michael , J.V. , Sutherland , J.V. , and Klemm , R.B. 1989 . Rate coefficient of the O + H2 = OH + H reaction determined via shock tube-laser absorption spectroscopy . J. Phys. Chem. , 93 , 282 – 291 .
  • Popov , N.A. 2011 . Effect of singlet oxygen O2(a 1Δ g ) molecules produced in a gas discharge plasma on the ignition of hydrogen–oxygen mixtures . Plasma Sources Sci. Technol. , 20 , 045002 .
  • Schott , G.L. , and Kinsey , J.L. 1958 . Kinetic studies of hydroxil radicals in shock waves. II. Induction times in the hydrogen-oxygen reaction . J. Chem. Phys. , 29 , 1177 – 1182 .
  • Schultz , E. , and Shepherd , J. 2000 . Validation of detailed reaction mechanisms for detonation simulation. California Institute of Technology Graduate Aeronautical Laboratory, Tech. Rep. FM 99-5.
  • Sellevag , S.R. , Georgievskii , Y. , and Miller , J.A. 2008 . The temperature and pressure dependence of the reactions H + O2( + M) → HO2( + M) and H + OH( + M) → H2O( + M) . J. Phys. Chem. A , 112 , 5085 – 5095 .
  • Semenov , N.N. 1958 . Some Problems of Chemical Kinetics and Reactivity , Pergamon , Oxford .
  • Shimizu , K. , Hibi , A. , Koshi , M. , Morii , Y. , and Tsuboi , N. 2011 . Updated kinetic mechanism for high-pressure hydrogen combustion . J. Propul. Power , 27 , 383 – 395 .
  • Slack , M.W. 1977 . Rate coefficient for H + O2 + M ˭ HO2 + M evaluated from shock tube measurements of induction times . Combust. Flame , 28 , 241 – 249 .
  • Slack , M. , and Grillo , A. 1977 . Investigation of hydrogen/air ignition sensitized by nitric oxide and nitrogen dioxide. NASA Report CR-2896.
  • Snyder , A.D. , Robertson , J. , Zanders , D.L. , and Skinner , G.B. 1965 . Shock tube studies of fuel-air ignition characteristics. Technical Report AFAPL-TR-65-93, Air Force Aero-Propulsion Lab, Wright-Patterson Air Force Base.
  • Srinivasan , N.K. , and Michael , J.V. 2006. The thermal decomposition of water. Int. J. Chem. Kinet. , 38, 211–219.
  • Stahl , G. , and Warnatz , J. 1991 . Numerical investigation of time-dependent properties and extinction of strained methane- and propane-air flamelets . Combust. Flame , 85 , 285 – 299 .
  • Starik , A. , and Sharipov , A. 2011 . Theoretical analysis of reaction kinetics with singlet oxygen molecules . Phys. Chem. Chem. Phys. , 13 , 16424 – 16436 .
  • Starik , A.M. , Titova , N.S. , Bezgin , L.V. , and Kopchenov , V.I. 2009 . The promotion of ignition in a supersonic H2-air mixing layer by laser-induced excitation of O2 molecules: Numerical study . Combust. Flame , 156 , 1641 – 1652 .
  • Starik , A.M. , Titova , N.S. , and Sharipov , A.S. 2010a . Kinetic mechanism of H2-O2 ignition promoted by singlet oxygen O2(a 1Δ g ) . In Roy , G.D. , and Frolov , S.M. (Eds.) Deflagrative and Detonative Combustion , Torus Press , Moscow , pp. 19 – 42 .
  • Starik , A.M. , Titova , N.S. , Sharipov , A.S. , and Kozlov , V.E. 2010b . Syngas oxidation mechanism . Combust. Explos. Shock Waves , 46 , 491 – 506 .
  • Treviño , C. 1991 . Ignition phenomena in H2-O2 mixtures . Prog. Astronaut. Aeronaut. , 131 , 19 – 43 .
  • Troe , J. 1979 . Predictive possibilities of unimolecular rate theory . J. Phys. Chem. , 83 , 114 – 126 .
  • Yip , T.C. 1989 . Ignition delay and characteristic reaction length in shock-induced supersonic combustion. AIAA Paper 89-2567.
  • Yu , G. , Li , J.G. , Zhao , J.R. , Yue , L.J. , Chang , X.Y. , and Sung , C.-J. 2005 . An experimental study of kerosene combustion in a supersonic model combustor using effervescent atomization . Proc. Combust. Inst. , 30 , 2859 – 2866 .
  • Zellner , R. , Erler , K. , and Field , D. 1977 . Kinetics of the recombination reaction OH + H + M → H2O + M at low temperatures . Symp. (Int.) Combust. , 16 , 939 – 948 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.