397
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Modeling of Soot Emissions in Diesel Sprays Based on Detailed Fuel and PAH Chemistry

, &
Pages 1696-1714 | Received 08 Mar 2013, Accepted 30 Jul 2013, Published online: 07 Oct 2013

REFERENCES

  • Amsden , A.A. 1997 . KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves. Los Alamos National Laboratory Report LA-13313-MS.
  • Appel , J.R. , Bockhorn , H. , and Frenklach , M. 2000 . Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons . Combust. Flame , 121 , 122 – 136 .
  • Belardini , P. , Bertoli , C. , Beatrice , C. , D'anna , A. , and Del Giacomo , N. 1996 . Application of a reduced kinetic model for soot formation and burnout in three-dimensional diesel combustion computations . Symp. (Int.) Combust. , 26 , 2517 – 2524 .
  • Boulanger , J. , Liu , F. , Neill , W.S. , and Smallwood , G.J. 2007 . An improved soot formation model for 3D diesel engine simulations . J. Eng. Gas Turbines Power , 129 , 877 – 884 .
  • Ciezki , H.K. , and Adomeit , G. 1993. Shock-tube investigation of self-ignition of n-heptane–air mixtures under engine relevant conditions. Combust. Flame , 93, 421–433.
  • Davis , S.G. , and Law , C.K. 1998 . Laminar flame speeds and oxidation kinetics of iso-octane–air and n-heptane–air flames . Symp. (Int.) Combust. , 27 , 521 – 527 .
  • D'Errico , G. , Ettorre , D. , and Lucchini , T. 2007 . Comparison of combustion and pollutant emission models for DI diesel engines. SAE Technical Paper 2007-24-0045.
  • Digital Analysis of Reactive Systems. 2012. DigAnaRS, 2.08.009 ed.
  • Dworkin , S.B. , Zhang , Q. , Thomson , M.J. , Slavinskaya , N.A. , and Riedel , U. 2011 . Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame . Combust. Flame , 158 , 1682 – 1695 .
  • Engine Combustion Network. 2013. Sandia National Laboratories.
  • Fenimore , C.P. , and Jones , G.W. 1967 . Oxidation of soot by hydroxyl radicals . J. Phys. Chem. , 71 , 593 .
  • Frenklach , M. , Clary , D.W. , Gardiner Jr. , W.C. , and Stein , S.E. 1985 . Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene . Symp. (Int.) Combust. , 20 , 887 – 901 .
  • Han , Z. , and Reitz , R.D. 1995 . Turbulence modeling of internal combustion engines using RNG k-ε models . Combust. Sci. Technol. , 106 , 267 – 295 .
  • Han , Z. , and Reitz , R.D. 1997 . A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling . Int. J. Heat Mass Transf. , 40 , 613 – 625 .
  • Han , Z. , Uludogan , A. , Hampson , G. , and Reitz , R. 1996 . Mechanism of soot and NOx emission reduction using multiple injection in a diesel engine. SAE Technical Paper 960633.
  • Kazakov , A. , and Foster , D.E. 1998 . Modeling of soot formation during DI diesel combustion using a multi-step phenomenological model. SAE Technical Paper 982463.
  • Kent , J.H. , and Wagner , H.G. 1982 . Soot measurements in laminar ethylene diffusion flames . Combust. Flame , 47 , 53 – 65 .
  • Kong , S.-C. , Han , Z. , and Reitz , R. 1995 . The development and application of a diesel ignition and combustion model for multidimensional engine simulation. SAE Technical Paper 950278.
  • Kong , S.-C. , and Reitz , R.D. 2002 . Use of detailed chemical kinetics to study HCCI engine combustion with consideration of turbulent mixing effects . J. Eng. Gas Turbines Power , 124 , 702 – 707 .
  • Kong , S.-C. , Sun , Y. , and Rietz , R.D. 2007 . Modeling diesel spray flame liftoff, sooting tendency, and NOx emissions using detailed chemistry with phenomenological soot model . J. Eng. Gas Turbines Power , 129 , 245 – 251 .
  • Ladommatos , N. , Song , H. , and Zhao , H. 2002 . Measurements and predictions of diesel soot oxidation rates . Proc. Inst. Mech. Eng. Part D , 216 , 677 – 689 .
  • Leung , K.M. , Lindstedt , R.P. , and Jones , W.P. 1991 . A simplified reaction mechanism for soot formation in nonpremixed flames . Combust. Flame , 87 , 289 – 305 .
  • Li , Y.H. , and Kong , S.C. 2008 . Diesel combustion modelling using LES turbulence model with detailed chemistry . Combust. Theory Modelling , 12 , 205 – 219 .
  • Mauss , F. , Schafer , T. , and Bockhorn , H. 1994a . Inception and growth of soot particles in dependence on the surrounding gas phase . Combust. Flame , 99 , 697 – 705 .
  • Mauss , F. , Trilken , B. , Breitbach , H. , and Peters , N. 1994b . Soot formation in partially premixed diffusion flames at atmospheric pressure . In Bockhorn , H. (Ed.) Soot Formation in Combustion , Berlin : Springer .
  • Nagle , J. , and Strickland-Constable , R. 1962 . Oxidation of carbon between 1000–2000°C. In Proceedings of the Fifth Conference on Carbon , MacMillan , University Park , PA , vol. 1, pp. 154–164.
  • Patel , A. , Kong , S.-C. , and Reitz , R.D. 2004. Development and validation of a reduced reaction mechanism for HCCI engine simulations. SAE Technical Paper 2004-01-0558.
  • Patterson , M. , and Reitz , R. 1998 . Modeling the effects of fuel spray characteristics on diesel engine combustion and emission. SAE Technical Paper 980131.
  • Reltz , R. , and Kuo , T. 1989 . Modeling of HC emissions due to crevice flows in premixed-charge engines. SAE Technical Paper 892085.
  • Sukumaran , S. , Kong , S.-C. , and Cho , N.H. 2013 . Modeling evaporating diesel sprays using an improved gas particle model. SAE Technical Paper 2013-01-1598.
  • Surovikin , V. 1976 . Analytical description of the processes of nucleus formation and growth of particles of carbon black in the thermal decomposition of aromatic hydrocarbons in the gas phase . Khimiya Tverdogo Topliva , 10 , 111 – 122 .
  • Tao , F. , Golovitchev , V.I. , and Chomiak , J. 2004 . A phenomenological model for the prediction of soot formation in diesel spray combustion . Combust. Flame , 136 , 270 – 282 .
  • Tao , F. , Reitz , R.D. , Foster , D.E. , and Liu , Y. 2009 . Nine-step phenomenological diesel soot model validated over a wide range of engine conditions . Int. J. Thermal Sci. , 48 , 1223 – 1234 .
  • Tesner , P.A. , Smegiriova , T.D. , and Knorre , V.G. 1971 . Kinetics of dispersed carbon formation . Combust. Flame , 17 , 253 – 260 .
  • Vishwanathan , G. , and Reitz , R.D. 2009 . Modeling soot formation using reduced polycyclic aromatic hydrocarbon chemistry in n-heptane lifted flames with application to low temperature combustion . J. Eng. Gas Turbines Power , 131 , 032801-1–032801-7 .
  • Vishwanathan , G. , and Reitz , R.D. 2010 . Development of a practical soot modeling approach and its application to low-temperature diesel combustion . Combust. Sci. Technol. , 182 , 1050 – 1082 .
  • Wang , H. , and Frenklach , M. 1997 . A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames . Combust. Flame , 110 , 173 – 221 .
  • Xiong , Q.G. , Li , B. , Chen , F.G. , Ma , J.S. , Ge , W. , and Li , J.H. 2010 . Direct numerical simulation of sub-grid structures in gas–solid flow GPU implementation of macro-scale pseudo-particle modeling . Chem. Eng. Sci. , 65 , 5356 – 5365 .
  • Xiong , Q.G. , Li , B. , Xu , J. , Wang , X.W. , Wang , L.M. , and Ge , W. 2012 . Efficient 3D DNS of gas-solid flows on Fermi GPGPU . Comp. Fluids , 70 , 86 – 94 .
  • Yoshihara , Y. , Kazakov , A. , Wang , H. , and Frenklach , M. 1994 . Reduced mechanism of soot formation—Application to natural gas-fueled diesel combustion . Symp. (Int.) Combust. , 25 , 941 – 948 .
  • Zeuch , T. , Moreac , G. , Ahmed , S.S. , and Mauss , F. 2008 . A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction . Combust. Flame , 155 , 651 – 674 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.