262
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Flame Inhibition by CF3CHCl2 (HCFC-123)

, , &
Pages 792-814 | Received 07 Aug 2013, Accepted 20 Dec 2013, Published online: 20 May 2014

REFERENCES

  • Amphlett, J.C., and Whittle, E. 1967. Reactions of trifluoromethyl radicals with iodine and hydrogen iodide. Trans. Faraday Soc., 63, 2695–2701.
  • Arican, M. H., Potter, E., and Whytock, D. A. 1973. Reactions of trifluoromethyl radicals with propane, butane and isobutane. J. Chem. Soc., Faraday Trans. I, 69, 1811–1816.
  • Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., JR., Kerr, J. A., Rossi, M. J., and Troe, J. 2001. Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. NIST Kinetics Database, WEB edition.
  • Babushok, V. I., Linteris, G. T., Burgess, Jr., D. R., and Baker, P. T. Submitted. Hydrocarbon flame inhibition by C3H2F3Br (2-BTP).
  • Babushok, V., Noto, T., Burgess, D. R. F., Hamins, A., and Tsang, W. 1996. Influence of CF3I, CF3Br, and CF3H on the high-temperature combustion of methane. Combust. Flame, 107, 351–367.
  • Blauer, J. A., Solomon, W. C., and Engleman, V. S. 1971. Kinetics of chlorine fluoride at high temperatures. J. Phys. Chem., 75, 3939–3944.
  • Bradley, J. N., Whytock, D. A. and Zaleski, T. A. 1976. Kinetic study of reaction of hydrogen-atoms with chlorotrifluoromethane. J. Chem. Soc., Faraday Trans. I, 72, 2284–2288.
  • Burgess, D. R., Zachariah, M. R., Tsang, W., and Westmoreland, P. R. 1995. Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Prog. Energy Combust. Sci., 21, 453–529.
  • Butkovskaya, N. I., Larichev, M. N., Leipunskii, I. O., Morozov, I. I., and Talroze, V. L. 1978. Mass-spectrometric investigation of the elemental reaction of fluorine-atoms with difluorochloromethane. Kinet. Catal., 19, 647–682.
  • Butlin, R. N., and Simmons, R. F. 1968. Inhibition of hydrogen-air flames by hydrogen halides. Combust. Flame, 12, 447–456.
  • Bykhalo, I. B., Filatov, V. V., Gordon, E. B., and Perminov, A. P. 1994. Kinetics study of 2-channel hydrogen and deuterium atom reactions with interhalogen molecules. Russ. Chem. Bull., 43, 1637–1645.
  • Casias, C. R., and McKinnon, J. T. 1996. Mechanisms of flame quenching by chlorine in well-stirred reactors. Combust. Sci. Technol., 116, 289–315.
  • Chang, W. D., Karra, S. B., and Senkan, S. M. 1987. A computational study of chlorine inhibition of CO flames. Combust. Flame, 69, 113–122.
  • Codnia, J., and Azcarate, M. L. 2006. Rate measurement of the reaction of CF2Cl radicals with O-2. Photochem. Photobiol., 82, 755–762.
  • Cohen, N., and Westberg, K. R. 1991. Chemical kinetic data sheets for high-temperature reactions. J. Phys. Chem. Ref. Data, 20, 1211–1311.
  • Cullison, R. F., Pogue, R. C. and White, M. L. 1973. Rotating sector study of the gas phase photochlorination of 2,2-dichloro-1,1,1-trifluoroethane. Int. J. Chem. Kinet., 5, 415–423.
  • Da Cruz, F. N., Vandooren, J., and Van Tiggelen, P. 1988. Comparison of the inhibiting effect of some halogenomethane compounds on flame propagation. Bull. Soc. Chim. Belg., 97, 1011–1030.
  • Day, M. J., Stamp, D. V., Thompson, K., and Dixon-Lewis, G. 1971. Inhibition of hydrogen-air and hydrogen-nitrous oxide flames by halogen compounds. Proc. Combust. Inst., 13, 705–712.
  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J. 1997. Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12. JPL Publication 97-4. JPL, Pasadena, CA.
  • Dixon-Lewis, G., and Simpson, R. J. 1976. Aspects of flame inhibition by halogen compounds. Proc. Combust. Inst., 16, 1111–1119.
  • Egerton, A., and Thabet, S. K. 1952. Flame propagation—the measurement of burning velocities of slow flames and the determination of limits of combustion. Proc. R. Soc. London, Ser. A, 211, 445–471.
  • Fettis, G. C., Knox, J. H., and Trotman-Dickenson, A. F. 1960. The reactions of fluorine atoms with alkanes. J. Chem. Soc., 1064–1071.
  • Foon, R., and McAskill, N. A. 1969. Kinetics of gas-phase fluorination of halomethanes. Trans. Faraday Soc., 65, 3005–3012.
  • Foon, R., and Tait, K. B. 1972a. Chlorine abstraction reactions of fluorine. 2. Kinetic determination of bond dissociation energy D in absence of quencher. J. Chem. Soc., Faraday Trans. I, 68, 104–111.
  • Foon, R., and Tait, K. B. 1972b. Chlorine abstraction reactions of fluorine. 3. Thermochemical data for chlorofluoroalkanes. J. Chem. Soc., Faraday Trans. I, 68, 1121–1130.
  • Francisco, J. S., and Li, Z. 1989. Dissociation pathways of carbonyl halides. J. Phys. Chem., 93, 8118–8122.
  • Fristrom, R. M., and Van Tiggelen, P. 1978. An interpretation of the inhibition of C-H-O flames by C-H-X compounds. Proc. Combust. Inst., 17, 773–785.
  • Goos, E., Burcat, A., and Ruscic, B. 2012. Extended Third Millennium Thermodynamic Database for Combustion and Air-Pollution Use with updates from Active Thermochemical Tables. Technion-IIT, Haifa, Israel. Ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics/BURCAT.THR (accessed August 2012).
  • Gurvich, L. V., Iorish, V. S., Chekhovskoi, D. V., Ivanisov, A. D., Proskurnev, A. Y., Yungman, V. S., Medvedev, V. A., Veits, I. V., and Bergman, G. A. 1993. IVTHANTHERMO. Database on Thermodynamic Properties of Individual Substances (NIST Special Database 5, IVTANTHERMO-PC, 1998), Institute of High Temperatures, Moscow.
  • Herron, J. T. 1988. Evaluated chemical kinetic data for the reactions of atomic oxygen o(p-3) with saturated organic-compounds in the gas-phase. J. Phys. Chem. Ref. Data, 17, 967–1026.
  • Ho, W. P., Barat, R. B., and Bozzelli, J. W. 1992. Thermal-reactions of CH2Cl2 in H2/O2 mixtures—implications for chlorine inhibition of CO conversion to CO2. Combust. Flame, 88, 265–295.
  • Holmstedt, G., Andersson, P., and Andersson, J. 1994. Investigation of scale effects on halon and halon alternatives regarding flame extinguishing, inerting concerntration and thermal decomposition products. In Fire Safety Science—Proceedings of the Fourth International Symposium. International Association of Fire Safety Science, London.
  • Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, R. E., and Miller, J. A. 1986. A Fortran computer package for the evaluation of gas-phase, multicomponent transport properties. Sandia National Laboratory.
  • Kee, R. J., Grcar, J. F., Smooke, M. D., and Miller, J. A. 1991. A Fortran computer program for modeling steady laminar one-dimensional premixed flames. Sandia National Laboratories.
  • Kee, R. J., Rupley, F. M., and Miller, J. A. 1989. CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Sandia National Laboratory.
  • Khatoon, T., Edelbutteleinhaus, J., Hoyermann, K., and Wagner, H. G. 1989. Rates and mechanisms of the reactions of ethanol and propanol with fluorine and chlorine atoms. Ber. Bunsen Ges., 93, 626–632.
  • Kim, A. K. 2002. Overview of recent progress in fire suppression technology. In 2nd NRIFD Symposium, Proceedings, Tokyo, Japan; NRIFD, Mikata, Tokyo, Japan, pp. 1–13.
  • Kumaran, S. S., Lim, K. P., Michael, J. V., and Wagner, A. F. 1995. Thermal-decomposition of CF2Cl2. J. Phys. Chem., 99, 8673–8680.
  • Kumaran, S. S., Su, M. C., Lim, K. P., Michael, J. V., and Wagner, A. F. 1996a. Thermal decomposition of CFCl3. J. Phys. Chem., 100, 7533–7540.
  • Kumaran, S. S., Su, M. C., Lim, K. P., Michael, J. V., Wagner, A. F., Harding, L. B., and Dixon, D. A. 1996b. Ab initio calculations and three different applications of unimolecular rate theory for the dissociations of CCl4, CFCl3, CF2Cl2, and CF3Cl. J. Phys. Chem., 100, 7541–7549.
  • Leyland, L. M., Majer, J. R., and Robb, J. C. 1970. Heat of formation of CF2Cl radical. Trans. Faraday Soc., 66, 898–900.
  • Leylegian, J. C., Law, C. K., and Wang, H. 1998a. Laminar flame speeds and oxidation kinetics of tetrachloromethane. Proc. Combust. Inst., 27, 529–536.
  • Leylegian, J. C., Zhu, D. L., Law, C. K., and Wang, H. 1998b. Experiments and numerical simulation on the laminar flame speeds of dichloromethane and trichloromethane. Combust. Flame, 114, 285–293.
  • Li, J., Zhao, Z. W., Kazakov, A., Chaos, M., Dryer, F. L., and Scire, J. J. 2007. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int. J. Chem. Kinet., 39, 109–136.
  • Linteris, G. T. 2013. Exothermic reaction of fire suppressants: Behavior of brominated and chlorinated compounds. In International Aircraft Systems Fire Protection Working Group Meeting, Cologne, Germany, May 22–23; Federal Aviation Administration, Atlantic City, NJ.
  • Linteris, G. T., and Babushok, V. I. 2000. Marginally flammable materials: Burning velocity of trans-dichloroethylene. In Scale Modeling 3rd International Symposium. Proceedings, ISSM3-C8, Nagoya, Japan; ISMC, Nagoya, Japan, pp. 1–8.
  • Linteris, G. T., Babushok, V. I., Sunderland, P. B., Takahashi, F., Katta, V., and Meier, O. 2012a. Understanding unwanted combustion enhancement by C6H12O. Proc. Combust. Inst., 34, 2683–2690.
  • Linteris, G. T., Burgess, D. R., Takahashi, F., Katta, V. R., Chelliah, H. K., and Meier, O. 2012b. Stirred reactor calculations to understand unwanted combustion enhancement by potential halon replacements. Combust. Flame, 159, 1016–1025.
  • Linteris, G. T., Takahashi, F., Katta, V. R., Chelliah, H. K., and Meier, O. 2011. Thermodynamic analysis of suppressant-enhanced overpressure in the FAA aerosol can simulator. In Fire Safety Science: Proceedings of the Tenth International Symposium. Boston, MA: International Association for Fire Safety Science.
  • Louis, F., Gonzalez, C. A., and Sawerysyn, J. P. 2004. Direct combined ab initio/transition state theory study of the kinetics of the abstraction reactions of halogenated methanes with hydrogen atoms. J. Phys. Chem. A, 108, 10586–10593.
  • Louis, F., and Sawerysyn, J. P. 1998. Kinetics and products studies of reactions between fluorine atoms and CHF3, CHClF2, CHCl2F and CHCl3. J. Chem. Soc., Faraday Trans., 94, 1437–1445.
  • Majer, J. R., Olavesen, C., and Robb, J. C. 1969. Absolute rate of recombination of CF2Cl radicals. Trans. Faraday Soc., 65, 2988–2993.
  • Melnikovich, S. V., and Moin, F. B. 1986. Kinetics and mechanism of reaction of difluorocarbene with molecular chlorine. Kinet. Catal., 27, 17–20.
  • Melnikovich, S. V., Moin, F. B., Fagarash, M. B., and Drogobytskaya, O. I. 1984. Kinetics of the reaction of difluorocarbene with 1,3-cyclopentadiene and hydrogen-chloride. Kinet. Catal., 25, 849–852.
  • Moore, T. A., Weitz, C. A., and Tapscott, R. E. 1996. An update on NMERI cup-burner test results. In Proceedings of HOTWC, NMERI, UNM, Albuquerque, NM, pp. 551–564.
  • Nikisha, L. V., Polyak, S. S., and Sokolova, N. A. 1976. Rate constant of the reaction of methyl radicals with difluorocloromethane. Kinet. Catal., 17, 936.
  • Noto, T., Babushok, V., Hamins, A., and Tsang, W. 1998. Inhibition effectiveness of halogenated compounds. Combust. Flame, 112, 147–160.
  • Olleta, A. C., and Lane, S. I. 2002. A theoretical study of hydrogen and chlorine transfer reactions from fluorine- and chlorine-substituted methanes by F3C center dot radicals. Phys. Chem. Chem. Phys., 4, 3341–3349.
  • Poulet, G., Laverdet, G., and Lebras, G. 1984. Kinetics of the reactions of atomic bromine with HO2 and HCO AT 298 K. J. Chem. Phys., 80, 1922–1928.
  • Quick, L. M., and Whittle, E. 1972. Reactions of trifluoromethyl radicals with organic halides. 7. Chloro-ethanes and fluorochloro-ethanes. J. Chem. Soc., Faraday Trans. I, 68, 878–888.
  • Reinhardt, J. W. 2005. Minimum performance standard for aircraft cargo compartment halon replacement fire suppression systems (2nd Update). DOT/FAA/AR-TN05/20, Washington, DC: Federal Aviation Administration.
  • Roesler, J. F., Yetter, R. A., and Dryer, F. L. 1992. The inhibition of the CO/H2O/O2 reaction by trace quantities of HCl. Combust. Sci. Technol., 82, 87–100.
  • Rosser, W. A., Wise, H., and Miller, J. 1959. Mechanism of combustion inhibition by compounds containing halogen. Proc. Combust. Inst., 7, 175–182.
  • Sandia National Laboratories. 1988. SENKIN: A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. SAND87-8248, Livermore, CA.
  • Seakins, P. W., Orlando, J. J., and Tyndall, G. S. 2004. Rate coefficients and production of vibrationally excited HCl from the reactions of chlorine atoms with methanol, ethanol, acetaldehyde and formaldehyde. Phys. Chem. Chem. Phys., 6, 2224–2229.
  • Shin, S. S., Vega, E. V., and Lee, K. Y. 2006. Experimental and numerical study of CH4/CH3Cl/O2/N2 premixed flames under oxygen enrichment. Combust. Explos. Shock Waves, 42, 715–722.
  • Sidebottom, H., and Treacy, J. 1984. Reaction of methyl radicals with haloalkanes. Int. J. Chem. Kinet., 16, 579–590.
  • Su, J. Z., and Kim, A. K. 2002. Suppression of pool fires using halocarbon streaming agents. Fire Technol., 38, 7–32.
  • Talhaoui, A., Louis, F., Meriaux, B., Devolder, P., and Sawerysyn, J. P. 1996. Temperature dependence of rate coefficients for the reactions of chlorine atoms with halomethanes of type CHCl3-xFx (x=0, 1, and 2). J. Phys. Chem., 100, 2107–2113.
  • Timonen, R. S., Russell, J. J., and Gutman, D. 1986. Kinetics of the reactions of halogenated methyl radicals (CF3, CF2Cl, CFCl2, and CCl3) with molecular chlorine. Int. J. Chem. Kinet., 18, 1193–1204.
  • Tschuikow-Roux, E., Yano, T., and Niedzielski, J. 1985. Reactions of ground-state chlorine atoms with fluorinated methanes and ethanes. J. Chem. Phys., 82, 65–74.
  • Vogt, R., and Schindler, R. N. 1993. A gaskinetic study of the reaction of HOCl with E atom, Cl atom, and H atom at room temperature. Ber. Bunsen Ges., 97, 819–829.
  • Wagner, H. G., Warnatz, J., and Zetzsch, C. 1976. Reaction of F atoms with HCl. Ber. Bunsen Ges., 80, 571–574.
  • Wang, H., You, X., Jucks, K. W., Davis, S. G., Laskin, A., Egolfopoulos, F., and Law, C. K. 2007. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. Los Angeles, CA: USC. http://ignis.usc.edu/USC_Mech_II.htm.
  • Wang, L., Liu, J. Y., Li, Z. S., and Sun, C. C. 2005. Direct dynamics studies on the hydrogen abstraction reactions of an F atom with CH3X (X= F, Cl, and Br). J. Chem. Theory Comput., 1, 201–207.
  • Wang, L., Zhao, Y. A., Wang, Z. Q., Ju, C. G., Feng, Y. L., and Zhang, J. L. 2010. Theoretical study and rate constants calculation of hydrogen abstraction reactions CF3CHCl2 + F and CF3CHClF + F. J. Mol. Struct. THEOCHEM, 959, 101–105.
  • Wang, L. M., and Barat, R. B. 1995. The inhibitory effects of chlorocarbon addition to fuel-rich methane air combustion. Hazard. Waste Hazard. Mater., 12, 51–60.
  • Warnatz, J., Wagner, H. G., and Zetzsch, C. 1971. Determination of reaction rate of F atoms with Cl2. Ber. Bunsen Ges., 75, 119.
  • Westbrook, C. K. 1982. Inhibition of hydrocarbon oxidation in laminar flames and detonations by halogenated compounds. Proc. Combust. Inst., 19, 127–141.
  • Westbrook, C. K. 1983. Numerical modeling of flame inhibition by CF3Br. Combust. Sci. Technol., 34, 201–225.
  • Whytock, D. A., Gray, P., and Clarke, J. D. 1972. Reactions of perfluoroethyl radicals with propane and neopentane. J. Chem. Soc., Faraday Trans. I, 68, 689–695.
  • Wilson, W. E., O’Donavan, J. T., and Fristrom, R. M. 1969. Flame inhibition by halogen compounds. Proc. Combust. Inst., 12, 929–942.
  • Wu, F. X., and Carr, R. W. 1992. Time-resolved observation of the formation of CF2O AND CFClO in the CF2Cl+O2 and CFCl2+O2 reactions—the unimolecular elimination of Cl atoms from CF2ClO and CFCl2O radicals. J. Phys. Chem., 96, 1743–1748.
  • Yu, H., Kennedy, E. M., Uddin, A., Sullivan, S. P., and Dlugogorski, B. Z. 2005. Experimental and computational studies of the gas-phase reaction of halon 1211 with hydrogen. Environ. Sci. Technol., 39, 3020–3028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.