1,190
Views
90
CrossRef citations to date
0
Altmetric
Original Articles

Modeling Lifted Jet Flames in a Heated Coflow Using an Optimized Eddy Dissipation Concept Model

, &
Pages 1093-1109 | Received 13 Apr 2014, Accepted 23 Dec 2014, Published online: 11 Apr 2015

REFERENCES

  • Afarin, Y., and Tabejamaat, S. 2013. The effect of fuel inlet turbulence intensity on H2/CH4 flame structure of MILD combustion using the LES method. Combust. Theor. Model., 17(3), 383–410.
  • Aminian, J., Galletti, C., Shahhosseini, S., and Tognotti, L. 2011. Key modeling issues in prediction of minor species in diluted-preheated combustion conditions. Appl. Therm. Eng., 31(16), 3287–3300.
  • Aminian, J., Galletti, C., Shahhosseini, S., and Tognotti, L. 2012. Numerical investigation of a MILD combustion burner: Analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow Turbul. Combust., 88(4), 597–623.
  • Cabra, R., Chen, J.Y., Dibble, R., Karpetis, A., and Barlow, R. 2005. Lifted methane-air jet flames in a vitiated coflow. Combust. Flame, 143(4), 491–506.
  • Cabra, R., Myhrvold, T., Chen, J., Dibble, R., Karpetis, A., and Barlow, R. 2002. Simultaneous laser Raman-Rayleigh-Lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst., 29, 1881–1888.
  • Cao, R.R., Pope, S.B., and Masri, A.R. 2005. Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame, 142, 438–453.
  • Cavaliere, A., and de Joannon, M. 2004. Mild combustion. Prog. Energ. Combust. Sci., 30(4), 329–366.
  • Christo, F.C., and Dally, B.B. 2004. Application of transport PDF approach for modelling MILD combustion. In Proceedings of the Fifteenth Australian Fluid Mechanic Conference, M. Behnia, W. Lin, and G. D. McBain (eds.), University of Sydney, Sydney, Australia.
  • Christo, F.C., and Dally, B.B. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame, 142(1–2), 117–129.
  • Dally, B., Karpetis, A., and Barlow, R. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst., 29, 1147–1154.
  • Dally, B.B., Fletcher, D.F., and Masri, A.R. 1998. Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theor. Model., 2(2), 193–219.
  • De, A., Oldenhof, E., Sathiah, P., and Roekaerts, D. 2011. Numerical simulation of Delft-jet-in-hot-coflow (DJHC) flames using the eddy dissipation concept model for turbulence-chemistry interaction. Flow Turbul. Combust., 87(4), 537–567.
  • Elsamra, R.M.I., Vranckx, S., and Carl, S.A. 2005. CH(A2Δ) formation in hydrocarbon combustion: The temperature dependence of the rate constant of the reaction C2H + O2 → CH(A2Δ) + CO2. J. Phys. Chem. 109(45), 10287–10293.
  • Frassoldati, A., Sharma, P., Cuoci, A., Faravelli, T., and Ranzi, E. 2010. Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow. Appl. Therm. Eng., 30(4), 376–383.
  • Galletti, C., Parente, A., and Tognotti, L. 2007. Numerical and experimental investigation of a mild combustion burner. Combust. Flame, 151, 649–664.
  • Gao, X., Duan, F., Lim, S.C., and Yip, M.S. 2013. NOx formation in hydrogen-methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions. Energy, 59, 559–569.
  • Gkagkas, K., and Lindstedt, R.P. 2007. Transported PDF modelling with detailed chemistry of pre- and auto-ignition in CH4/air mixtures. Proc. Combust. Inst., 31, 1559–1566.
  • Gordon, R.L., Masri, A.R., and Mastorakos, E. 2008. Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combust. Flame, 155(1–2), 181–195.
  • Gordon, R.L., Masri, A.R., Pope, S.B., and Goldin, G.M. 2007. A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theor. Model., 11(3), 351–376.
  • Hall, J.M., and Petersen, E.L. 2006. An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures. Int. J. Chem. Kinet., 38(12), 714–724.
  • Hidaka, Y., Takuma, H., and Suga, M. 1985. Shock-tube study of the rate constant for excited hydroxyl (OH*(2Σ+)) formation in the nitrous oxide-molecular hydrogen reaction. J. Phys. Chem., 89(23), 4903–4905.
  • Ihme, M., and See, Y.C. 2011. LES flamelet modeling of a three-stream MILD combustor : Analysis of flame sensitivity to scalar inflow conditions. Proc. Combust. Inst., 33, 1309–1217.
  • Ihme, M., Zhang, J., He, G., and Dally, B.B. 2012. Large-eddy simulation of a jet-in-hot-coflow burner operating in the oxygen-diluted combustion regime. Flow Turbul. Combust., 89, 449–464.
  • Kerkemeier, S.G., Markides, C.N., Frouzakis, C.E., and Boulouchos, K. 2013. Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air. J. Fluid Mech., 720, 424–456.
  • Kulkarni, R.M., and Polifke, W. 2013. LES of Delft-jet-in-hot-coflow (DJHC) with tabulated chemistry and stochastic fields combustion model. Fuel Process. Technol., 107, 138–146.
  • Luo, Z., Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K., and Lu, T. 2012. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame, 159(1), 265–274.
  • Magnussen, B.F. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. Presented at the 19th AIAA Aerospace Meeting, St. Louis, MO, January 12–15.
  • Magnussen, B.F. 2005. The eddy dissipation concept a bridge between science and technology. Presented at the ECCOMAS Thematic Conference on Computational Combustion, Lisbon, Portugal, June 21–24.
  • Mardani, A., Tabejamaat, S., and Ghamari, M. 2010. Numerical study of influence of molecular diffusion in the Mild combustion regime. Combust. Theor. Model., 14(5), 747–774.
  • Mardani, A., Tabejamaat, S., and Hassanpour, S. 2013. Numerical study of CO and CO2 formation in CH4/H2 blended flame under MILD condition. Combust. Flame, 160(9), 1636–1649.
  • Mardani, A., Tabejamaat, S., and Mohammadi, M.B. 2011. Numerical study of the effect of turbulence on rate of reactions in the MILD combustion regime. Combust. Theor. Model., 15(6), 753–772.
  • Masri, A.R., Cao, R., Pope, S.B., and Goldin, G.M. 2003. PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theor. Model., 8(1), 1–22.
  • Medwell, P.R., Blunck, D.L., and Dally, B.B. 2014. The role of precursors on the stabilisation of jet flames issuing into a hot environment. Combust. Flame, 161(2), 465–474.
  • Medwell, P.R., and Dally, B.B. 2012. Effect of fuel composition on jet flames in a heated and diluted oxidant stream. Combust. Flame, 159(10), 3138–3145.
  • Medwell, P.R., Kalt, P.A.M., and Dally, B.B. 2007. Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow. Combust. Flame, 148(1–2), 48–61.
  • Medwell, P.R., Kalt, P.A.M., and Dally, B.B. 2008. Imaging of diluted turbulent ethylene flames stabilized on a jet in hot coflow (JHC) burner. Combust. Flame, 152, 100–113.
  • Medwell, P.R., Kalt, P.A.M., and Dally, B.B. 2009. Reaction zone weakening effects under hot and diluted oxidant stream conditions. Combust. Sci. Technol., 181(7), 937–953.
  • Najafizadeh, S.M.M., Sadeghi, M.T., Sotudeh-Gharebagh, R., and Roekaerts, D.J. 2013. Chemical structure of autoignition in a turbulent lifted H2/N2 jet flame issuing into a vitiated coflow. Combust. Flame, 160(12), 2928–2940.
  • Oldenhof, E., Tummers, M.J., van Veen, E.H., and Roekaerts, D.J.E.M. 2010. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames. Combust. Flame, 157(6), 1167–1178.
  • Oldenhof, E., Tummers, M.J., van Veen, E.H., and Roekaerts, D.J.E.M. 2011. Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame, 158(8), 1553–1563.
  • Oldenhof, E., Tummers, M.J., van Veen, E.H., and Roekaerts, D.J.E.M. 2012. Transient response of the Delft jet-in-hot coflow flames. Combust. Flame, 159(2), 697–706.
  • Petersen, E.L., Kalitan, D.M., and Rickard, M.J. 2003. Calibration and chemical kinetics modeling of an OH chemiluminescence diagnostic. AIAA Paper, 2003–4493.
  • Ren, Z., and Pope, S.B. 2009. Sensitivity calculations in PDF modelling of turbulent flames. Proc. Combust. Inst., 32, 1629–1637.
  • Shabanian, S.R., Medwell, P.R., Rahimi, M., Frassoldati, A., and Cuoci, A. 2013. Kinetic and fluid dynamic modeling of ethylene jet flames in diluted and heated oxidant stream combustion conditions. Appl. Therm. Eng., 52, 538–554.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, Jr., W.C., Lissianski, V.V., and Qin, Z. 2000. GRI-Mech 3.0. Available at: http://www.me.berkeley.edu/gri_mech/.
  • Tamura, M., Berg, P.A., Harrington, J.E., Luque, J., Jeffries, J.B., Smith, G.P., and Crosley, D.R. 1998. Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames. Combust. Flame, 114(34), 502–514.
  • Wang, F., Mi, J., and Li, P. 2013. Combustion regimes of a jet diffusion flame in hot co-flow. Energy and Fuels, 27(6), 3488–3498.
  • Yoo, C.S., Richardson, E.S., Sankaran, R., and Chen, J.H. 2011. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proc. Combust. Inst., 33, 1619–1627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.