228
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Combustion of Methane Using Palladium Catalysts Supported in Alumina or Zirconia

, , &
Pages 518-528 | Received 15 May 2013, Accepted 19 Nov 2013, Published online: 23 Apr 2014

REFERENCES

  • Bozo, C., Guilhaume, N., Garbowisk, E., and Primet, M. 2000. Combustion of methane on CeO2–ZrO2 based catalysts. Catal. Today, 59, 33.
  • Bozo, C., Guilhaume, N., and Herrmann, J. 2001. Role of the ceria–zirconia support in the reactivity of platinum and palladium catalysts for methane total oxidation under lean conditions. J. Catal., 203, 393.
  • Brun, M., Berthet, A., and Bertolini, J. C. 1999. XPS, AES and Auger parameter of Pd and PdO. J. Elect. Spectrosc. Relat. Phenom., 104, 55.
  • Carstens, J. N., Su, S. C., and Bell, A. T. 1998. Factors affecting the catalytic activity of Pd/ZrO2 for the combustion of methane. J. Catal., 176, 136.
  • Centi, G., and Mol, J. 2001. Supported palladium catalysts in environmental catalytic technologies for gaseous emissions. J. Mol. Catal. A: Chem., 173, 287.
  • Choudhary, T.V., Banerjee, S., and Choudhary, V.R. 2002. Catalysts for combustion of methane and lower alkanes. Appl. Catal., A: Gen., 234, 1.
  • Church, J. S., Cant, N. W., and Trimm, D. L. 1993. Stabilisation of aluminas by rare earth and alkaline earth ions. Appl. Catal. A, 101, 105.
  • Cimino, S., Pironi, R., and Lisi, L. 2002. Zirconia supported LaMnO3 monoliths for the catalytic combustion of methane. Appl. Catal. B: Env., 35, 243.
  • Ciuparu, D., Lyubovsky, M.R., Altman, E., Pfefferle, L.D., and Datye, A. 2002. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev., 44, 593.
  • Colussi, S., Trovarelli, A., Cristiani, C., Lietti, L., and Groppi, G. 2012. The influence of ceria and other rare earth promoters on palladium-based methane combustion catalysts. Catal. Today, 180, 124.
  • Deng, Y., and Nevell, T. G. 1999. Non-steady activity during methane combustion over Pd/Al2O3 and the influences of Pt and CeO2 additives. Catal. Today, 47, 279.
  • Eguchi, K., and Arai, H. 2001. Low temperature oxidation of methane over Pd-based catalysts effect of support oxide on the combustion activity. Appl. Catal., A, 222, 359.
  • Escandón, L. S., Ordóñez, S., Vega, A., and Díez, F. V. 2005. Oxidation of methane over palladium catalysts: Effect of the support. Chemosphere, 58, 9.
  • Farrauto, R. J., Lampert, J. K., Hobson, M. C., and Waterman, E. M. 1995. Thermal decomposition and reformation of PdO catalysts, support effects. Appl. Catal., B, 6, 263.
  • Forzatti, P. 2003. Status and perspectives of catalytic combustion for gas turbines. Catal. Today, 83, 3.
  • Fujimoto, K., Ribeiro, F. H., Borja, M. A., and Iglesia, E. 1998. Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J. Catal., 179, 431.
  • Gélin, P., and Primet, M. 2002. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl. Catal., B, 39, 1.
  • Gélin, P., Urfels, L., Primet, M., and Tena, E. 2003. Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: Influence of water and sulphur containing compounds. Catal. Today, 83, 45.
  • Geus, J.W., and Van Giezen, J.C. 1999. Monoliths in catalytic oxidation. Catal. Today, 47, 169.
  • Groppi, G., Cristiani C., Lietti, L., Ramella, C., Valentini, M., and Forzatti, P. 1999. Effect of ceria on palladium supported catalysts for high temperature combustion of CH4 under lean conditions. Catal. Today, 50, 399.
  • Grunwaldt, J.-D., Van Vegten, N., and Baiker, A. 2007. Insight into the structure of supported palladium catalysts during the total oxidation of methane. Chem. Commun., 44, 4635.
  • Guerrero, S., Araya, P., and Wolf, E. E. 2006. Methane oxidation on Pd supported on high area zirconia catalysts. Appl. Catal. A, 298, 243.
  • Hicks, R. F., Qi, H., Young, M. L., and Lee, R. G. 1990. Structure sensitivity of methane oxidation over platinum and palladium. J. Catal., 122, 280.
  • Hoang, D.L., and Lieske, H. 1994. Effect of hydrogen treatments on ZrO2 and Pt/ZrO2 catalysts. Catal. Lett., 27, 33.
  • Hoflund, G. B., Zhenhua, L., Epling, W. S., Göbel, T., Schneider, P., and Hahn, H. 2000. Catalytic methane oxidation over Pd supported on nanocrystalline and polycrystalline TiO2, Mn3O4, CeO2 and ZrO2. React. Kinet. Catal. Lett., 70, 103.
  • Kucharczyk, B., Tylus, W., and Kepinski, L. 2004. Pd based monolithic catalysts on metal supports for catalytic combustion of methane. Appl. Catal. B, 149, 27.
  • Lyubovsky, M., and Pfefferle, L. 1998. Methane combustion over the α-alumina supported Pd catalyst: Activity of the mixed Pd/PdO state. Appl. Catal. A, 173, 107.
  • Muller, C. A., Maciejewski, M., Koeppel, R. A., and Baiker, A. 1997. Combustion of methane over palladium/zirconia derived from a glassy Pd–Zr alloy: Effect of Pd particle size on catalytic behavior. J. Catal., 166, 36.
  • Muller, C. A., Maciejewski, M., Koeppel, R. A., and Baiker, A. 1999. Combustion of methane over palladium/zirconia: effect of Pd-particle size and role of lattice oxygen. Catal. Today, 47, 245.
  • Muñoz, M.C., Gallego, S., Beltran, J.I., and Cerda, J. 2006. Adhesion at metal–ZrO2 interfaces. Surf. Sci. Rep., 61, 303.
  • Ribeiro, F. H., Chow, M., and Dalla Beta, R.A. 1996. Kinetics of the complete oxidation of methane over supported palladium. J. Catal., 146, 537.
  • Sekizawa, K., Widjaja, H., Maeda, S., Ozawa, Y., and Eguchi, K. 2000a. Low temperature oxidation of methane over Pd catalyst supported on metal oxides. Catal. Today, 59, 69.
  • Sekizawa, K., Widjaja, H., Maeda, S., Ozawa, Y., and Eguchi, K. 2000b. Low temperature oxidation of methane over Pd/SnO2 catalyst. Appl. Catal., A, 200, 211.
  • Simplício, L. M. T., Brandão, S. T., Domingos, D., Bozon-Verduraz, F., and Sales, E. A. 2009. Catalytic combustion of methane at high temperatures: Cerium effect on PdO/Al2O3 catalysts. Appl. Catal. A, 360, 2.
  • Simplício, L. M. T., Brandão, S.T., Sales, E.A., Lietti, L., and Bozon-Verduraz, F. 2006. Methane combustion over PdO-alumina catalysts: The effect of palladium precursors. Appl. Catal., B, 63, 9.
  • Sohn, J. M., Kang, S.K., and Woo, S. I. 2002. Catalytic properties and characterization of Pd supported on hexaaluminate in high temperature combustion, J. Mol. Catal. A: Chem., 186, 135.
  • Specchia, S., Finocchio, E., Busca, G., Palmisano, P., and Specchia, V. 2009. Surface chemistry and reactivity of ceria–zirconia-supported palladium oxide catalysts for natural gas combustion. J. Catal., 263, 134.
  • Su, S. C., Carstens, J. N., and Bell, A. T. 1998. A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4. J. Catal., 176, 125.
  • Suhonen, S., Valden, M., Pessa, M., Savimaki, A., Harkonen, M., Hietikko, M., Pursiainen, J., and Laitinen, R. 2001. Characterization of alumina supported Pd catalysts modified by rare earth oxides using X-ray photoelectron spectroscopy and X-ray diffraction: Enhanced thermal stability of PdO in Nd/Pd catalysts. Appl. Catal. A, 207, 113.
  • Thevenin, P.O., Pocoroba, E., Pettersson, L. J., Karhu, H., Vayrynen, I. J. and Jaras, S.G. 2002. Characterization and activity of supported palladium combustion catalysts. J. Catal., 207, 139.
  • Van Vegten, N., Maciejewski, M., Krumeich, F., and Baiker, A. 2009. Structural properties, redox behaviour and methane combustion activity of differently supported flame-made Pd catalysts. Appl. Catal., B, 93, 38.
  • Voogt, E. H., Mens, A. J. M., Gijzeman, O. L. J., and Geus, J. W. 1996. XPS analysis of palladium oxide layers and particles. Surf. Sci., 350, 21.
  • Voogt, E. H., Mens, A. J. M., Gijzeman, O. L. J., and Geus, J. W. 1999. XPS analysis of the oxidation of palladium model catalysts. Catal. Today, 47, 321.
  • Yang, S., Valiente, A. M., Gonzales, M. B., Ramos, T. R., and Ruiz, A. G. 2000. Methane combustion over supported palladium catalysts: I. Reactivity and active phase. Appl. Catal., B, 28, 223.
  • Yoshida, H., Nakajima, T., Yazawa, Y., and Hattori, T. 2007. Support effect on methane combustion over palladium catalysts. Appl. Catal., B, 71, 70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.