446
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Modeling CO2 Chemical Effects on CO Formation in Oxy-Fuel Diffusion Flames Using Detailed, Quasi-Global, and Global Reaction Mechanisms

&
Pages 829-848 | Received 09 Aug 2013, Accepted 10 Jan 2014, Published online: 02 Jun 2014

REFERENCES

  • Andersen, J., Rasmussen, C.L., Giselsson, T. and Glarborg, P. 2009. Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions. Energy Fuels, 23, 1379–1389.
  • Andersson, K., Johansson, R., Johnsson, F., and Leckner, B. 2008. Radiation intensity of propane-fired oxy-fuel flames: Implications for soot formation. Energy Fuels, 22, 1535–1541.
  • Andersson, K., and Johnsson, F. 2007. Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel, 86, 656–668.
  • ANSYS. (2009). ANSYS FLUENT 12.0 Theory Guide.
  • Beer, J.M., and Chigier, N.A. 1983. Combustion Aerodynamics. Krieger, Malabar, FL.
  • Buhre, B.J.P., Elliott, L.K., Sheng, C.D., Gupta, R.P., and Wall, T.F. 2005. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci., 31, 283–307.
  • Chen, L., and Ghoniem, A.F. 2012. Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES: A validation study. Energy Fuels, 26, 4783–4798.
  • Chen, L., Yong, S.Z., and Ghoniem, A.F. 2012. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust. Sci., 38, 156–214.
  • Chui, E.H., and Raithby, G.D. 1993. Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numer. Heat Transfer, Part B, 23, 269–288.
  • Dryer, F.L., and Glassman, I. 1973. High-temperature oxidation of CO and CH4. Symp. (Int.) Combust., 14, 987–1003.
  • Glarborg, P., and Bentzen, L.L.B. 2008. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels, 22, 291–296.
  • Hjärtstam, S., Andersson, K., Johnsson, F., and Leckner, B. 2009. Combustion characteristics of lignite-fired oxy-fuel flames. Fuel, 88, 2216–2224.
  • Hjärtstam, S., Johansson, R., Andersson, K., and Johnsson, F. 2012. Computational fluid dynamics modeling of oxy-fuel flames: The role of soot and gas radiation. Energy Fuels, 26, 2786–2797.
  • Hjärtstam, S., Normann, F., Andersson, K., and Johnsson, F. (2012). Oxy-fuel combustion modeling: Performance of global reaction mechanisms. Ind. Eng. Chem. Res., 51, 10327–10337.
  • Hottel, H.C., and Sarofim, A.F. 1967. Radiative Transfer. McGraw-Hill, New York.
  • Johansson, R., Andersson, K., Leckner, B., and Thunman, H. 2010. Models for gaseous radiative heat transfer applied to oxy-fuel conditions in boilers. Int. J. Heat Mass Transfer, 53, 220–230.
  • Jones, W.P., and Lindstedt, R.P. 1988. Global reaction schemes for hydrocarbon combustion. Combust. Flame, 73, 233–249.
  • Khan, I.M., and Greeves, G. 1974. A method for calculating the formation and combustion of soot in diesel engines In Heat Transfer in Flames, N. H. Afgan and J. M. Beer ( Eds.). Washington, DC: Scripta Book Co.
  • Liu, F., Guo, H., and Smallwood, G.J. 2003. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames. Combust. Flame, 133, 495–497.
  • Liu, F., Guo, H., Smallwood, G.J., and Gülder, Ö.L. 2001. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation. Combust. Flame, 125, 778–787.
  • Liu, H., Zailani, R., and Gibbs, B.M. 2005. Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle. Fuel, 84, 2109–2115.
  • Magnussen, B.F. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. Paper presented at the 19th AIAA Aerospace Science Meeting, St. Louis, MO, January 12–15.
  • Magnussen, B.F., and Hjertager, B.H. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust., 16, 719–729.
  • Masri, A.R., Dibble, R.W., and Barlow, R.S. 1992. Chemical kinetic effects in nonpremixed flames of H2/CO2 fuel. Combust. Flame, 91, 285–309.
  • Menter, F.R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 32, 1598–1605.
  • Okazaki, K., and Ando, T. 1997. NOx reduction mechanism in coal combustion with recycled CO2. Energy, 22, 207–215.
  • Raithby, G.D., and Chui, E.H. 1990. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J. Heat Transfer, 112, 415–423.
  • Rehfeldt, S., Kuhr, C., Ehmann, M., Bergins, C., Scheffknecht, G., Maier, J., and Wu, S. 2009. Basic experiments and CFD calculations of air and oxyfuel firing of lignite and bituminous coals in 0.5 and 1 MW scale combustion test facilities. Paper presented at the 34th International Technical Conference on Clean Coal and Fuel Systems. Clearwater, FL, May 31–June 4.
  • Singer, S.L., Chen, L., and Ghoniem, A.F. 2013. The influence of gasification reactions on char consumption under oxy-combustion conditions: Effects of particle trajectory and conversion. Proc. Combust. Inst., 34(2), 3471–3478.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Vitali, J., Lissianski, V., and Qin, Z. 2009. GRI-Mech 3.0. Retreived from http://www.me.berkeley.edu/gri_mech/.
  • Spalding, D.B. 1971. Mixing and chemical reaction in steady confined turbulent flames. Symp. (Int.) Combust., 13, 649–657.
  • Toftegaard, M.B., Brix, J., Jensen, P.A., Glarborg, P., and Jensen, A.D. 2010. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci., 36, 581–625.
  • Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., Rathnam, R., Zeenathal, F., Moghtaderi, B., Buhre, B., Sheng, C., Gupta, R., Yamada, T., Makino, K., and Yu, J. 2009. An overview on oxyfuel coal combustion—state of the art research and technology development. Chem. Eng. Res. Des., 87, 1003–1016.
  • Westbrook, C.K., and Dryer, F.L. 1981. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combust. Sci. Technol., 27, 31–43.
  • Westbrook, C.K., and Dryer, F.L. 1984. Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Combust. Sci., 10, 1–57.
  • Woycenko, D., van de Kamp, W., and Roberts, P. 1995. Combustion of pulverized coal in a mixture of oxygen and recycled flue gas. Report No. IFRF Doc F98/Y/4, International Flame Research Foundation, Livorno, Italy.
  • Zheng, L. 2011. Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture. Woodhead Publishing Limited, Philadelphia.
  • Zheng, L., and Furimsky, E. 2003. Assessment of coal combustion in O2+CO2 by equilibrium calculations. Fuel Process. Technol., 81, 23–34.
  • Zhu, D.L., Egolfopoulos, F.N., and Law, C.K. 1989. Experimental and numerical determination of laminar flame speeds of methane/(Ar, N2, CO2)-air mixtures as function of stoichiometry, pressure, and flame temperature. Symp. (Int.) Combust., 22, 1537–1545.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.