569
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Flame Kernel Generation and Propagation in Turbulent Partially Premixed Hydrocarbon Jet

, &
Pages 698-711 | Received 15 May 2013, Accepted 19 Nov 2013, Published online: 23 Apr 2014

REFERENCES

  • Abdel-Gayed, R.G., and Bradley, D. 1977. Dependence of turbulent burning velocity on turbulent Reynolds number and Ratio of laminar burning velocity to rms turbulent velocity. Proc. Combust. Inst., 16, 1725–1735.
  • Ballal, D.R., and Lefebvre, A.H. 1977. Ignition and flame quenching in flowing gaseous mixtures. Proc. R. Soc. London Ser. A, 357, 163–181.
  • Bedat, B., and Cheng, R. K. 1995. Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame, 100, 485–494.
  • Böker, D., and Brüggemann, D. 2011. Advancing lean combustion of hydrogen–air mixtures by laser-induced spark ignition. Int. J. Hydrogen Energy, 36, 14759–14767.
  • Cardin, C., Renou, B., Cabot, G., and Boukhalfa, A. 2013. Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames. C.R. Mec., 341, 191–200.
  • Chakraborty, N., Klein, M., and Cant, R.S. 2007. Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst., 31, 1385–1392.
  • Docquier, N., and Candel, S. 2002. Combustion control and sensors: A review. Prog. Energy Combust. Sci., 28, 107–150.
  • Drake, M.C., and Haworth, D.C. 2007. Advanced gasoline engine development using optical diagnostics and numerical modeling. Proc. Combust. Inst., 31, 99–124.
  • Egolfopoulos, F.N., Cho, P., and Law, C.K. 1989. Laminar flame speeds of methane/air mixtures under reduced and elevated pressures. Combust. Flame, 76, 375–391.
  • Eichenberger, D.A., and Roberts, W. 1999. Effect of unsteady stretch on spark ignited flame kernel survival. Combust. Flame, 118, 469–478.
  • Eisazadeh-Far, K., Parsinejad, F., Metghalchi, H., and Keck, J. C. 2010. On flame kernel formation and propagation in premixed gases. Combust. Flame, 157, 2211–2221.
  • Elbaz, A.M. 2013. Early structure of LPG partially premixed conically stabilized flames. Exp. Therm. Fluid Sci., 44, 583–591.
  • Elbaz A.M., Mansour, M.S., Khaled A.E., and Mohamed, D. 2013. An experimental study of the effect of partial premixing level on the interaction between the flame kernel and flow field. International Journal of Applied Science (IJAS), 4 (1), 1–13.
  • Elbaz, A.M., Mansour, M.S., and Mohamed, D. 2012. Experimental investigation of flame kernel in turbulent partial premixed flames. Int. J. Appl. Sci., 3 (2), 21–34.
  • El-Mahallawy, F., Abdelhafez, A., and Mansour, M. 2007. Mixing and nozzle geometry effects on flame structure and stability. Combust. Sci. Technol., 179, 249–263.
  • Gashi, S., Hult, J., Jenkins, K.W., Chakraborty, N., Cant, R.S., and Kaminski, C.F. 2005. Curvature and wrinkling of premixed flame kernels comparisons of OH PLIF and DNS data. Proc. Combust. Inst., 30, 809–817.
  • Huang, Y., and Yang, V. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci., 35, 293–364.
  • Jenkins, K.W., and Cant, R.S. 2002. Curvature effects on flame kernels in a turbulent environment. Proc. Combust. Inst., 29, 2023–2029.
  • Jenkins, K.W., Klein, M., Chakraborty, N., and Cant, R.S. 2006. Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin reaction zones regime, Combust. Flame, 145, 415–434.
  • Kaminski, C.F., Hult, J., Alden, M., Lindenmaier, S., Dreizler, A., Mass, U., and Baum, M. 2000. Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations. Proc. Combust. Inst., 28, 399–405.
  • Lewis, B., and Von Elbe, G. 1987. Combustion Flames and Explosions of Gases. Academic Press, New York.
  • Mansour, M. S. 2000. A concentric flow conical nozzle burner for highly stabilized partially premixed flames. Combust. Sci. Technol., 152, 115–145.
  • Mansour, M.S. 2003. Stability characteristics of lifted turbulent partially premixed jet flames. Combust. Flame, 133, 263–274.
  • Mansour, M.S., Peters, N., and Schrader, L.U. 2008. Experimental study of turbulent flame kernel propagation. Exp. Therm. Fluid Sci., 32, 1396–1404.
  • Marley, S.K., Danbya, S.J., Roberts, W.L., Drakeb, M.C., and Fansler, T.D. 2008. Quantification of transient stretch effects on kernel–vortex interactions in premixed methane–air flames. Combust. Flame, 154, 296–309.
  • Mastorakos, E. 2009. Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci., 35, 57–97.
  • Merklinger, H. M. 1993. Focusing the View Camera: A Scientific Way to Focus the View Camera and Estimate Depth of Field. v. 1.0. Bedford, Nova Scotia: Seaboard Printing Limited. ISBN: 0-9695025-2-4. Version 1.6.1 available in PDF at http://www.trenholm.org/hmmerk/.
  • Metghalchi, M., and Keck, J. C. 1980. Laminar burning velocity of propane-air mixtures at high temperature and pressure. Combust. Flame, 38, 143–154.
  • Morsy, M. H. 2012. Review and recent developments of laser ignition for internal combustion engines applications. Renewable Sustainable Energy Rev., 16, 4849–4875.
  • Peters, N. 2000. Turbulent Combustion. Cambridge University Press, Cambridge, UK.
  • Phuoc, T. X. 2006. Laser-induced spark ignition fundamental and applications. Opt Lasers Eng., 44, 351–397.
  • Reddy, H., and Abraham, J. 2011. A numerical study of vortex interactions with flames developing from ignition kernels in lean methane/air mixtures. Combust. Flame, 158, 401–415.
  • Reddy, H., and Abraham, J. 2013. Influence of turbulence–kernel interactions on flame development in lean methane/air mixtures under natural gas-fueled engine conditions. Fuel, 103, 1090–1105.
  • Srivastava, D. K., Dharamshi, K., and Agarwal, A. K. 2011. Flame kernel characterization of laser ignition of natural gas–air mixture in a constant volume combustion chamber. Opt. Lasers Eng., 49, 1201–1209.
  • Videto, B.D., and Santavicca, D.A. 1991. A turbulent flow system for studying turbulent combustion processes. Combust. Sci. Technol., 76, 159–164.
  • Wang, G., Boileau, M., Veynante, D., and Truffin, K. 2012. Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model. Combust. Flame, 159, 2742–2754.
  • Xiong, Y., Roberts, W. L., Drake, M. C., and Fansler, T. D., 2001. Investigation of pre-mixed flame-kernel/vortex interactions via high-speed imaging. Combust. Flame, 126, 1827–1844.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.