670
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Impact of Steam-Dilution on the Flame Shape and Coherent Structures in Swirl-Stabilized Combustors

, &
Pages 889-911 | Received 27 Aug 2013, Accepted 30 Jan 2014, Published online: 02 Jun 2014

REFERENCES

  • Acharya, V.S., Shin, D.-H., and Lieuwen, T. 2013. Premixed flames excited by helical disturbances: Flame wrinkling and heat release oscillations. J. Propul. Power, 29, 1282–1291. DOI: 10.2514/1.B34883
  • Albin, E., Nawroth, H., Göke, S., D’Angelo, Y., and Paschereit, C.O. 2013. Experimental investigation of burning velocities of ultra-wet methane–air–steam mixtures. Fuel Process. Technol., 107, 27–35. DOI: 10.1016/j.fuproc.2012.06.027
  • Anacleto, P.M., Fernandes, E.C., Heitor, M.V., and Shtork, S.I. 2003. Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust. Sci. Technol., 175, 1369–1388. DOI: 10.1080/00102200302354
  • Babkin, V., and V’yun, A. 1971. Effect of water vapor on the normal burning velocity of a methane-air mixture at high pressures. Combust. Explos. Shockwaves, 7(3), 339–341.
  • Bartlett, M.A., and Westermark, M.O. 2005a. A study of humidified gas turbines for short-term realization in midsized power generation—Part II: Intercooled cycle analysis and final economic evaluation. J. Eng. Gas Turbines Power, 127, 100–108. DOI: 10.1115/1.1788684
  • Bartlett, M.A., and Westermark, M.O. 2005b. A study of humidified gas turbines for short-term realization in midsized power generation—Part I: Nonintercooled cycle analysis. J. Eng. Gas Turbines Power, 127, 91–99. DOI: 10.1115/1.1788683
  • Berkooz, G., Holmes, P., and Lumley, J.L. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech., 25, 539–575. DOI: 10.1146/ annurev.fl.25.010193.002543
  • Bhargava, A., Colket, M., Sowa, W.A., et al. 2000. An experimental and modeling study of humid air premixed flames. J. Eng. Gas Turbines Power, 122, 405. DOI: 10.1115/1.1286921
  • Boxx, I., Arndt, C.M., Carter, C.D., and Meier, W. 2010. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor. Exp. Fluids, 52, 555–567. DOI: 10.1007/s00348-010-1022-x
  • Durox, D., Schuller, T., Noiray, N., and Candel, S. 2009. Experimental analysis of nonlinear flame transfer functions for different flame geometries. Proc. Combust. Inst., 32, 1391–1398. DOI: 10.1016/j.proci.2008.06.204
  • Findeisen, J., Gnirß, M., Damaschke, N., et al. 2005. 2D–Concentration measurements based on Mie scattering using a commercial PIV system. Presented at the 6th International Symposium Particle Image Velocimetry, Pasadena,CA, September 21–23.
  • Freund, O., Schaefer, P., Rehder, H.-J., and Roehle, I. 2011. Experimental investigations on cooling air ejection at a straight turbine cascade using PIV and QLS. Presented at the ASME Turbo Expo, Vancouver,Canada, June 6–10.
  • Froud, D., O’Doherty, T., and Syred, N. 1995. Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust. Flame, 100, 407–412.
  • Gallaire, F., and Chomaz, J.-M. 2003. Mode selection in swirling jet experiments: A linear stability analysis. J. Fluid Mech., 494, 223–253. DOI: 10.1017/S0022112003006104
  • Gallaire, F., Ruith, M.R., Meiburg, E., et al. 2006. Spiral vortex breakdown as a global mode. J. Fluid Mech., 549, 71–90. DOI: 10.1017/S0022112005007834
  • Galley, D., Ducruix, S., Lacas, F., and Veynante, D. 2011. Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence. Combust. Flame, 158, 155–171. DOI: 10.1016/j.combustflame.2010.08.004
  • Galmiche, B., Halter, F., Foucher, F., and Dagaut, P. 2011. Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy Fuels, 25, 948–954.
  • Giauque, A., Selle, L., Gicquel, L., et al. 2005. System identification of a large-scale swirled partially premixed combustor using LES and measurements. J. Turbul., 6, N21. DOI: 10.1080/14685240512331391985
  • Göckeler, K., Terhaar, S., and Paschereit, C.O. 2013. Residence time distribution in a swirling flow at non-reacting, reacting, and steam-diluted conditions. J. Eng. Gas Turbines Power, 136(4), 041505.
  • Göke, S., Göckeler, K., Krüger, O., and Paschereit, C.O. 2010. Computational and experimental study of premixed combustion at ultra wet conditions. Presented at the ASME Turbo Expo, Glasgow,Scotland, June 14–18.
  • Göke, S., and Paschereit, C.O. 2013. Influence of steam dilution on nitrogen oxide formation in premixed methane/hydrogen flames. J. Propul. Power, 29, 249–260. DOI: 10.2514/1.B34577
  • Hermeth, S., Staffelbach, G.M., Gicquel, L.Y., and Poinsot, T. 2013. Bistable flame stabilization in swirled flames and influence on flame transfer functions. Combust. Flame, 161, 184–196.
  • Higgins, B., McQuay, M.Q., Lacas, F., et al. 2001. Systematic measurements of OH chemiluminescence for fuel—Lean, high-pressure, premixed, laminar flames. Fuel, 80, 67–74. DOI: 10.1016/S0016-2361(00)00069-7
  • Huang, Y., and Yang, V. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci., 35, 293–364.
  • Huerre, P., and Monkewitz, P.A. 1990. Local and global instabilities in spatially developing fluids. Annu. Rev. Fluid Mech., 22, 473–537.
  • Koroll, G.W., and Mulpuru, S.R. 1988. The effect of dilution with steam on the burning velocity and structure of premixed hydrogen flames. Symp. (Int.) Combust, 21(1), 1811–1819.
  • Kuenne, G., Ketelheun, A., and Janicka, J. 2011. LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame, 158, 1750–1767. DOI: 10.1016/j.combustflame.2011.01.005
  • Leuckel, W. 1967. Swirl intensities, swirl types and energy losses of different swirl generating devices. IFRF Doc. Nr. G, 2:1–53.
  • Liang, H., and Maxworthy, T. 2005. An experimental investigation of swirling jets. J. Fluid Mech., 525, 115–159. DOI: 10.1017/S0022112004002629
  • Lieuwen, T., and Yang, V. 2005. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, American Institute of Aeronautics and Astronautics, Reston,Virginia.
  • Mazas, A.N., Fiorina, B., Lacoste, D.A., and Schuller, T. 2011. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combust. Flame, 158, 2428–2440. DOI: 10.1016/j.combustflame.2011.05.014
  • Michalke, A. 1965. On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech., 23, 521–544. DOI: 10.1017/S0022112065001520
  • Moeck, J.P., Bourgouin, J.-F., Durox, D., et al. 2012. Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame. Combust. Flame, 159, 2650–2668. DOI: 10.1016/j.combustflame.2012.04.002
  • Monkewitz, P.A., and Sohn, K. 1988. Absolute instability in hot jets. AIAA J., 26, 911–916. DOI: 10.2514/3.9990
  • Oberleithner, K., Paschereit, C.O., Seele, R., and Wygnanski, I. 2012. Formation of turbulent vortex breakdown: Intermittency, criticality, and global instability. AIAA J., 50, 1437–1452. DOI: 10.2514/1.J050642
  • Oberleithner, K., Sieber, M., Nayeri, C.N., et al. 2011. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: Stability analysis and empirical mode construction. J. Fluid Mech., 679, 383–414. DOI: 10.1017/jfm.2011.141
  • Oberleithner, K., Terhaar, S., Rukes, L., and Paschereit, C.O. 2013. Why non-uniform density suppresses the precessing vortex core. J. Eng. Gas Turbines Power, 135(12), 121506.
  • Roehle, I., Schodl, R., Voigt, P., and Willert, C.E. 2000. Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components. Meas. Sci. Technol., 11, 1023–1035. DOI: 10.1088/0957-0233/11/7/317
  • Roux, S., Lartigue, G., Poinsot, T., et al. 2005. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust. Flame, 141, 40–54. DOI: 10.1016/j.combustflame.2004.12.007
  • Ruith, M.R., Chen, P., Meiburg, E., and Maxworthy, T. 2003. Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation. J. Fluid Mech., 486, 331–378. DOI: 10.1017/S0022112003004749
  • Smith, G.P., Golden, D.M., Frenklach, M., et al. 2000. GRI-Mech 3.0.
  • Stöhr, M., Sadanandan, R., and Meier, W. 2011. Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame. Exp. Fluids, 51, 1153–1167. DOI: 10.1007/s00348-011-1134-y
  • Syred, N. 2006. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci., 32, 93–161. DOI: 10.1016/j.pecs.2005.10.002
  • Syred, N., and Beér, J.M. 1974. Combustion in swirling flows: A review. Combust. Flame, 23, 143–201.
  • Terhaar, S., Bobusch, B.C., and Paschereit, C.O. 2012. Effects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions. J. Eng. Gas Turbines Power. DOI: 10.1115/1.4007165
  • Terhaar, S., and Paschereit, C.O. 2012. High-speed PIV investigation of coherent structures in a swirl-stabilized combustor operating at dry and steam-diluted conditions. Presented at the 16th International Symposium on Applied Laser Technology to Fluid Mechanics, Lisbon,Portugal, July 9–12.
  • Thumuluru, S.K., and Lieuwen, T. 2009. Characterization of acoustically forced swirl flame dynamics. Proc. Combust. Inst., 32, 2893–2900. DOI: 10.1016/j.proci.2008.05.037
  • Voigt, P., Schodl, R., and Griebel, P. 1997. Using the laser light sheet technique in combustion research. Proc. 90th Symp. AGARD-PEP Adv. Non-intrusive Instrum. Propuls. Engines.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.