2,569
Views
78
CrossRef citations to date
0
Altmetric
Original Articles

Reaction Zones and Their Structure in MILD Combustion

, , &
Pages 1075-1096 | Received 06 Sep 2013, Accepted 06 Mar 2014, Published online: 26 Jun 2014

REFERENCES

  • Awosope, I., Kandamby, N., and Lockwood, F. 2006. Flameless oxidation modelling: On application to gas turbine combustors. J. Energy Inst., 79, 75–83.
  • Batchelor, G.K., and Townsend, A.A. 1948. Decay of turbulence in the final period. Proc. R. Soc. Lond, A, 194( 1039), 527–543.
  • Bilger, R.W., Stårner, S.H., and Kee, R.J. 1990. On reduced mechanism for methane-air combustion in nonpremixed flames. Combust. Flame, 80, 135–149.
  • Buschmann, A., Dinkelacker, F., Schäfer, T., and Wolfrum, J. 1996. Measurement of the instantaneous detailed flame structure in turbulent premixed combustion. Proc. Combust. Inst., 26(1), 437–445.
  • Cant, R. S. 2012. SENGA2 User Guide. Technical Report CUED/A–THERMO/TR67. Cambridge University Engineering Department.
  • Cavaliere, A., and de Joannon, M. 2004. Mild combustion. Prog. Energy Combust. Sci., 30, 329–366.
  • Chen, J.H. 2011. Petascale direct numerical simulation of turbulent combustion fundamental insights towards predictive models. Proc. Combust. Inst., 33, 99–123.
  • Chen, Y.C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., and Man-sour, M.S. 1996. The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame, 107, 223–244.
  • Coelho, P. J., and Peters, N. 2001. Numerical simulation of a MILD combustion burner. Combust. Flame, 124, 503–518.
  • Dally, B.B., Karpetis, A.N., and Barlow, R.S. 2002. Structure of turbulent nonpremixed jet flames in a diluted hot coflow. Proc. Combust. Inst., 29, 1147–1154.
  • Dally, B.B., Riesmeier, E., and Peters, N. 2004. Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame, 137, 418–431.
  • Dunstan, T.D., Swaminathan, N., and Bray, K.N.C. 2012. Influence of flame geometry on turbulent premixed flame propagation: A DNS investigation. J. Fluid Mech., 709, 191–222.
  • Dunstan, T.D., Swaminathan, N., Bray, K.N.C., and Cant, R.S. 2011. Geometrical properties and turbulent flame speed measurements in stationary V-flames using direct numerical simulation. Flow Turbulence Combust., 87, 237–259.
  • Duwig, C., Fuchs, L., Griebel, P., Siewert, P., and Boschek, E. 2007. Study of a confined turbulent jet: Influence of combustion and pressure. AIAA J., 45(3), 624–639.
  • Duwig, C., Li, B., and Aldén, M. 2012. High resolution imaging of flameless and distributed turbulent combustion. Combust. Flame, 159, 306–316.
  • Duwig, C., Stankovic, D., Fuchs, L., Li, G., and Gutmark, E. 2008. Experimental and numerical study of flameless combustion in a model gas turbine combustor. Combust. Sci. Technol., 180(2), 279–295.
  • Eswaran, V., and Pope, S. B. 1987. Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids, 31(3), 506–520.
  • Galleti, C., Parente, A., and Tognotti, L. 2007. Numerical and experimental investigation of a Mild combustor burner. Combust. Flame, 151, 649–664.
  • Hayashi, S., and Mizobuchi, Y. 2011. Utilization of hot burnt gas for better control of combustion and emissions. In N. Swaminathan and K. N. C. Bray (Eds.), Turbulent Premixed Flames, Cambridge University Press, Cambridge, UK, pp. 365–378.
  • De Joannon, M., Saponaro, A., and Cavaliere, A. 2000. Zero-dimensional analysis of diluted oxidation of methane in rich conditions. Proc. Combust. Inst., 28, 1639–1646.
  • Katsuki, M., and Hasegawa, T. 1998. The science and technology of combustion in highly preheated air. Proc. Combust. Inst., 27(2), 3135–3146.
  • Krishnamurthy, N., Paul, P. J., and Blasiak, W. 2009. Studies on low-intensity oxy-fuel burner. Proc. Combust. Inst., 32, 3139–3146.
  • Li, P., and Mi, J. 2011. Influence of inlet dilution of reactants on premixed combustion in a recuperative furnace. Flow Turbulence Combust., 87(4), 617–638.
  • Medwell, P.R. 2007. Laser diagnostics in MILD combustion. PhD thesis, The University of Adelaide, Adelaide, Australia.
  • Minamoto, Y., Dunstan, T.D., Swaminathan, N., and Cant, R.S. 2013. DNS of EGR-type turbulent flame in MILD condition. Proc. Combust. Inst., 34, 3231–3238.
  • Minamoto, Y., and Swaminathan, N. 2014. Scalar gradient behaviour in MILD combustion. Combust. Flame, 161, 1063–1075.
  • Mohamed, H., Bentîcha, H., and Mohamed, S. 2009. Numerical modeling of the effects of fuel dilution and strain rate on reaction zone structure and NOx formation in flameless combustion. Combust. Sci. Technol., 181(8), 1078–1091.
  • Van Oijen, J. A. 2013. Direct numerical simulation of autoigniting mixing layers in MILD combustion. Proc. Combust. Inst., 34(1), 1163–1171.
  • Oldenhof, E., Tummers, M.J., Van Veen, E.H., and Roekaerts, D.J.E.M. 2011. Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame, 158, 1553–1563.
  • Özdemir, Í.B., and Peters, N. 2001. Characteristics of the reaction zone in a combustor operating at MILD combustion. Exp. Fluids, 30, 683–695.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Pfadler, S., Leipertz, A., and Dinkelacker, F. 2008. Systematic experiments on turbulent premixed Bunsen flame including turbulent flux measurement. Combust. Flame, 152, 616–631.
  • Plessing, T., Peters, N., and Wünning, J.G. 1998. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Combust. Inst., 27, 3197–3204.
  • Poinsot, T., and Lele, S. 1992. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101, 104–129.
  • Rogallo, R.S. 1981. Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315.
  • Smooke, M.D., and Giovangigli, V. 1991. Formulation of the premixed and non-premixed test problems. In M. D. Smooke (Ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames., Vol. 384, Springer Verlag, New York, pp. 1–28.
  • Suzukawa, Y., Sugiyama, S., Hino, Y., Ishioka, M., and Mori, I. 1997. Heat transfer improvement and NOx reduction by highly preheated air combustion. Energy Convers. Manage., 38(10–13), 1061–1071.
  • Swaminathan, N., and Bray, K.N.C. 2005. Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame, 143, 549–565.
  • Woelk, G., and Wünning, J. 1993. Controlled combustion by flameless oxidation. Joint Meeting of the British and German Sections of the Combustion Institute, Cambridge, UK.
  • Wünning, J.A. 1991. Flameless oxidation with highly preheated air. Chem. Ing. Tech., 63(12), 1243–1245.
  • Wünning, J.A., and Wünning, J.G. 1997. Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci., 23, 81–94.