326
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

Algebraic Closure of Scalar Dissipation Rate for Large Eddy Simulations of Turbulent Premixed Combustion

, &
Pages 1309-1337 | Received 19 Oct 2013, Accepted 30 Mar 2014, Published online: 30 Sep 2014

REFERENCES

  • Bilger, R.W. 2004. Some aspects of scalar dissipation. Flow Turbul. Combust., 72(2–4), 93.
  • Boger, M., Veynante, D., Boughanem, H., and Trouvé, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst., 27, 917.
  • Borghi, R., and Dutoya, D. 1978. On the scales of the fluctuations in turbulent combustion. Proc. Combust. Inst., 17, 235.
  • Borghi, R. 1990. Turbulent premixed combustion: Further discussions on scales of fluctuations. Combust. Flame, 80, 304.
  • Bray, K.N.C. 1980. Turbulent flows with premixed reactants. In P.A. Libby and F.A. Williams (Eds.), Turbulent Reacting Flows, Springer Verlag, Berlin, Heidelburg, New York, pp. 115–183.
  • Bray, K.N.C., and Swaminathan, N. 2011. Fundamentals and challenges. In N. Swaminathan and K.N.C. Bray (Eds.), Turbulent Premixed Flame, 1st ed., Cambridge University Press, Cambridge, UK, pp. 1–40.
  • Chakraborty, N., and Cant, R.S. 2007. A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation. Phys. Fluids, 19, 105101.
  • Chakraborty, N., and Cant, R.S. 2009a. Effects of Lewis number on scalar transport in turbulent premixed flames. Phys. Fluids, 21, 035110.
  • Chakraborty, N., and Cant, R.S. 2009b. Effects of Lewis number on turbulent scalar transport and its modeling in turbulent premixed flames. Combust. Flame, 156, 1427.
  • Chakraborty, N., and Cant, R.S. 2009c. Physical insight and modelling for Lewis number effects on turbulent heat and mass transport in turbulent premixed flames. Numer. Heat Transfer, A, 55(8), 762.
  • Chakraborty, N., and Cant, R.S. 2011. Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame, 158, 1768.
  • Chakraborty, N., and Cant, R.S. 2013. Turbulent Reynolds number dependence of flame surface density transport in the context of Reynolds averaged Navier Stokes simulations. Proc. Combust. Inst., 34, 1347.
  • Chakraborty, N., and Klein, M. 2008. A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids, 20, 085108.
  • Chakraborty, N., and Lipatnikov, A. 2013a. Conditional velocity statistics for high and low Damköhler number turbulent premixed combustion in the context of Reynolds averaged Navier Stokes simulations. Proc. Combust. Inst., 34, 1333.
  • Chakraborty, N., and Lipatnikov, A.N. 2013b. Effects of Lewis number on the statistics of conditional fluid velocity in turbulent premixed combustion in the context of Reynolds averaged Navier Stokes simulations. Phys. Fluids, 25, 045101.
  • Chakraborty, N., and Swaminathan, N. 2007a. Influence of Damköhler number on turbulence-scalar interaction in premixed flames, Part I: Physical insight. Phys. Fluids, 19, 045103.
  • Chakraborty, N., and Swaminathan, N. 2007b. Influence of Damköhler number on turbulence-scalar interaction in premixed flames, Part II: Model development. Phys. Fluids., 19, 045104.
  • Chakraborty, N., and Swaminathan, N. 2010. Effects of Lewis number on scalar dissipation transport and its modelling implications for turbulent premixed combustion. Combust. Sci. Technol., 182, 1201.
  • Chakraborty, N., and Swaminathan, N. 2011. Effects of Lewis number on scalar variance transport in premixed flames. Flow Turbul. Combust., 87, 261.
  • Chakraborty, N., and Swaminathan, N. 2013. Reynolds number effects on scalar dissipation rate transport and its modelling in turbulent premixed combustion. Combust. Sci. Technol., 185, 676.
  • Chakraborty, N., Champion, M., Mura, A., and Swaminathan, N. 2011a. Scalar dissipation rate approach to reaction rate closure. In N. Swaminathan and K.N.C. Bray ( Eds.), Turbulent Premixed Flame, 1st edn., Cambridge University Press, Cambridge, UK, pp. 76–102.
  • Chakraborty, N., Hartung, G., Katragadda, M., and Kaminski, C.F. 2011d. A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust. Flame, 158, 1372.
  • Chakraborty, N., Katragadda, M., and Cant, R.S. 2011b. Effects of Lewis number on turbulent kinetic energy transport in turbulent premixed combustion. Phys. Fluids, 23, 075109.
  • Chakraborty, N., Katragadda, M., and Cant, R.S. 2011c. Statistics and modelling of turbulent kinetic energy transport in different regimes of premixed combustion. Flow Turbul. Combust., 87, 205.
  • Chakraborty, N., Klein, M., and Swaminathan, N. 2009. Effects of Lewis number on reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst., 32, 1409.
  • Chakraborty, N., Rogerson, J.W., and Swaminathan, N. 2008. A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids, 20, 045106.
  • Chakraborty, N., Rogerson, J.W., and Swaminathan, N. 2010. The scalar gradient alignment statistics of flame kernels and its modelling implications for turbulent premixed combustion. Flow Turbul. Combust., 85(1), 25.
  • Charlette, F., Meneveau, C., and Veynante, D. 2002a. A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: Nondynamic formulation and initial tests. Combust. Flame, 131, 159.
  • Charlette, F., Meneveau, C., and Veynante, D. 2002b. A power-law flame wrinkling model for LES of premixed turbulent combustion. Part II: Dynamic formulation. Combust. Flame, 131, 181.
  • Chen, J.H., Choudhary, A., De Supinski, D., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorski, N., Sankaran, R., Shende, S., and Yoo, C.S. 2009. Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discov., 2(1), 015001.
  • Clavin, P., and Williams, F.A. 1982. Effects of molecular diffusion and thermal expansion on the structure and dynamics of turbulent premixed flames in turbulent flows of large scale and small intensity. J. Fluid Mech., 128, 251.
  • Dunstan, T., Minamoto, Y., Chakraborty, N., and Swaminathan, N. 2013. Scalar dissipation rate modelling for large eddy simulation of turbulent premixed flames. Proc. Combust. Inst., 34, 1193.
  • Girimaji, S.S., and Zhou, Y. 1996. Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids, 8(5), 1224.
  • Grout, R.W. 2007. An age-extended progress variable for conditioning reaction rates. Phys. Fluids, 19, 105107.
  • Han, I., and Huh, K.H. 2008. Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers for turbulent premixed combustion. Combust. Flame, 152, 194.
  • Han, I., and Huh, K.H. 2009. Effects of the Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc. Combust. Inst., 33, 1419.
  • Jenkins, K.W., and Cant, R.S. 1999. DNS of turbulent flame kernels. In C. Liu, L. Sakell, and T. Beautner (Eds.), Proceedings of the Second AFOSR Conference on DNS and LES, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 191–202.
  • Knikker, R., Veynante, D., and Meneveau, C. 2004. A dynamic flame surface density model for large eddy simulations of turbulent premixed combustion. Phys. Fluids, 16, 91.
  • Kolla, H., Rogerson, J., Chakraborty, N., and Swaminathan, N. 2009. Prediction of turbulent flame speed using scalar dissipation rate. Combust. Sci. Technol., 181, 518.
  • Langella, I., Chakraborty, N., and Swaminathan, N. 2013. Large eddy simulations of premixed combustion using SDR approach. Proceedings of the 8th Mediterranean. Combustion Symposium, Izmir, Turkey, September 8–13.
  • Mantel, T., and Borghi, R. 1994. New model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame, 96(4), 443.
  • Mura, A., and Borghi, R. 2003. Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame, 133, 193.
  • Mura, A., Robin, V., Champion, M., and Hasegawa, T. 2009. Small-scale features of velocity and scalar fields of turbulent premixed flames. Flow Turbul. Combust., 82, 339.
  • Mura, A., Tsuboi, K., and Hasegawa, T. 2008. Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Theor. Model., 12, 671.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Poinsot, T., and Lele, S.K. 1992. Boundary conditions for direct simulation of compressible viscous flows. J. Comput. Phys., 101, 104.
  • Pope, S.B. 2000. Turbulent Flows, Cambridge University Press, Cambridge, UK.
  • Prasad, R., and Sreenivasan, K.R. 1990. Quantitative three dimensional imaging and structure of passive scalar fields in fully turbulent flows. J. Fluid Mech., 216, 1.
  • Reddy, H., and Abraham, J. 2012. Two-dimensional direct numerical simulation evaluation of the flame surface density model for flames developing from an ignition kernel in lean methane/air mixtures under engine conditions. Phys. Fluids, 24, 105108.
  • Rogallo, R.S. 1981. Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 91416.
  • Rutland, C.J., and Trouvé, A. 1993. Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame, 94, 41.
  • Shivamoggi, B.K. 1995. Multi-fractal aspects of the fine-scale structure of temperature fluctuations in isotropic turbulence. Physica A, 221, 460.
  • Sivashinsky, G.I. 1983. Instabilities, pattern formation and turbulence in flames. Annu. Rev. Fluid Mech., 15, 179.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations—I: The basic experiment. Monthly Weather Rev., 91, 99.
  • Sreenivasan, K.R. 1991. Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech., 23, 539.
  • Sreenivasan, K.R., Ramshankar, R., and Meneveau, C. 1989. Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A, 421, 79.
  • Swaminathan, N., and Bray, K.N.C. 2005. Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame, 143, 549.
  • Swaminathan, N., and Grout, R. 2006. Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids, 18, 045102.
  • Trouvé, A., and Poinsot, T. 1994. The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech., 278, 1.
  • Veynante, D., and Vervisch, L. 2002. Turbulent combustion modelling. Prog. Energy Combust. Sci., 28, 193–266.
  • Wray, A.A. 1990. Minimal storage time advancement schemes for spectral methods. NASA Report No. MS 202 A–1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.