356
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Aspects of 0D and 3D Modeling of Soot Formation for Diesel Engines

, , &
Pages 1517-1535 | Received 25 Oct 2013, Accepted 30 Mar 2014, Published online: 30 Sep 2014

REFERENCES

  • Abani, N., and Reitz, R. 2010. Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays. Combust. Theor. Model., 14(5), 715–746.
  • Bai, X., Balthasar, M., Mauss, F., and Fuchs, L. 1998. Detailed soot modeling in turbulent jet diffusion flames. Proc. Combust. Inst., 27(1), 1623–1630.
  • Balthasar, M. 2000. Detailed soot modelling in laminar and turbulent reacting flows. Ph.D. thesis. Lund University, Lund, Sweden.
  • Balthasar, M., Eismark, J., and Magnusson, I. 2009. Soot modelling in heavy-duty diesel engines. In H. Bockhorn, A. D’Anna, A. Sarofim, and H. Wang. (Eds.), Combustion Generated Fine Carbonaceous Particles, Proceedings of an international workshop, Villa Orlandi, Anacapri, May 13–16, 2007; Karlsruhe University Press, Karlsruhe, Germany.
  • Balthasar, M., Heyl, A., Mauss, F., Schmitt, F., and Bockhorn, H. 1996. Flamelet modeling of soot formation in laminar ethyne/air-diffusion flames. Proc. Combust. Inst., 26(2), 2369–2377.
  • Balthasar, M., Mauss, F., Knobel, A., and Kraft, M. 2002a. Detailed modeling of soot formation in a partially stirred plug flow reactor. Combust. Flame, 128(4), 395–409.
  • Balthasar, M., Mauss, F., Pfitzner, M., and Mack, A. 2002b. Implementation and validation of a new soot model and application to aeroengine combustors. J. Eng. Gas Turbines Power, 124(1), 66–74.
  • Barths, H., Hasse, C., Bikas, G., and Peters, N. 2000. Simulation of combustion in DI diesel engines using an Eulerian particle flamelet model. Proc. Combust. Inst., 28, 1161–1168.
  • Battin-Leclerc, F. 2008. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog. Energy Combust. Sci., 34(4), 440–498.
  • Bensler, H., Bo, T., de Risi, A., Mauss, F., Montefrancesco, E., Netzell, K., and Willand, J. 2006. Prediction of non-premixed combustion and soot formation using an interactive flamelet approach. Proceedings of THIESEL 2006 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, Valencia, Spain, September 13–15.
  • Bhave, A., and Kraft, M. 2004. Partially stirred reactor model: Analytical solutions and numerical convergence study of a PDF Monte Carlo method. SIAM J. Sci. Comput., 25(5), 1798–1823.
  • Cao, R.R., Wang, H., and Pope, S.B. 2007. The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst., 31(1), 1543–1550.
  • Carbonell, D., Oliva, A., and Perez-Segarra, C. 2009. Implementation of two-equation soot flamelet models for laminar diffusion flames. Combust. Flame, 156(3), 621–632.
  • Colin, O., and Benkenida, A. 2004. The 3-zones extended coherent flame model (ECFM-3Z) for computing premixed/diffusion combustion. Oil & Gas Science and Technology — Rev. IFP, 59(6), 593–609.
  • Computational Dynamics Ltd. 2005. StarCD v3.26. User Manual. Computational Dynamics Ltd., London.
  • Curl, R.L. 1963. Dispersed phase mixing: I. Theory and effects in simple reactors. AIChE J., 9(2), 175–181.
  • De Paola, G., Mastorakos, E., Wright, Y.M., and Boulouchos, K. 2008. Diesel engine simulations with multi-dimensional conditional moment closure. Combust. Sci. Technol., 180(5), 883–899.
  • Farrell, J.T., Cernansky, N.P., Dryer, F.L., Friend, D., Hergart, C.A., Law, C.K., McDavid, R.M., Mueller, C.J., Patel, A.K., and Pitsch, H. 2007. Development of an experimental database and kinetic models for surrogate diesel fuels. SAE Paper 2007-01–0201.
  • Frenklach, M. 2002. Method of moments with interpolative closure. Chem. Eng. Sci., 57(12), 2229–2239.
  • Frenklach, M., and Wang, H. 1991. Detailed modeling of soot particle nucleation and growth. Proc. Combust. Inst., 23(1), 1559–1566.
  • Haworth, D. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci., 36(2), 168–259.
  • Hergart, C., and Peters, N. 2002. Applying the representative interactive flamelet model to evaluate the potential effect of wall heat transfer on soot emissions in a small-bore direct-injection diesel engine. J. Eng. Gas Turbiness Power, 124, 1042–1052.
  • Heywood, J.B. 1988. Internal Combustion Engine Fundamentals. McGraw-Hill, New York.
  • Jay, S., and Colin, O. 2011. A variable volume approach of tabulated detailed chemistry and its applications to multidimensional engine simulations. Proc. Comb. Inst., 33(2), 3065–3072.
  • Karlsson, A., Magnusson, I., Balthasar, M., and Mauss, F. 1998. Simulation of soot formation under diesel engine conditions using a detailed kinetic soot model. SAE Technical Paper 981022.
  • Kazakov, A., and Frenklach, M. 1998. Dynamic modeling of soot particle coagulation and aggregation: Implementation with the method of moments and application to high-pressure laminar premixed flames. Combust. Flame, 114, 481–501.
  • Klimenko, A., and Bilger, R. 1999. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci., 25(6), 595–687.
  • Kraft, M. 1998. Stochastic Modelling of Turbulent Reacting Flow in Chemical Engineering. VDI Verlag, Düsseldorf, Germany.
  • Loge AB. 2013. LOGEsoft v1.0. User Manual. Loge AB, Lund, Sweden.
  • Maigaard, P., Mauss, F., and Kraft, M. 2003. Homogenous charge compression ignition engine: A simulation study on the effect of inhomogeneities. J. Energy. Gas Turbines. Power, 125(2), 466–471.
  • Mauss, F. 1998. Entwicklung eines kinetischen Modells der Rußbildung mit schneller Polymerisation. Dissertation D 82. RWTH Aachen, Aachen, Germany.
  • Mauss, F., Keller, D., and Peters, N. 1991. A Lagrangian simulation of flamelet extinction and re-ignition in turbulent jet diffusion flames. Proc. Combust. Inst., 23(1), 693–698.
  • Mauss, F., Netzell, K., and Lehtiniemi, H. 2006. Aspects of modeling soot formation in turbulent diffusion flames. Combust. Sci. Technol., 178(10–11), 1871–1885.
  • Mauss, F., Schäfer, T., and Bockhorn, H. 1994. Inception and growth of soot particles in dependence on the surrounding gas phase. Combust. Flame, 99, 697–705.
  • Merker, G.P., Schwarz, C., and Teichmann, R. 2012. Combustion Engines Development: Mixture Formation, Combustion, Emissions and Simulation. Springer-Verlag, Berlin–Heidelberg.
  • Mitchell, P., and Frenklach, M. 2003. Particle aggregation with simultaneous surface growth. Phys. Rev. E, 67(6), 061407.
  • Nakov, G., Mauss, F., Wenzel, P., and Krüger, C. 2010a. Application of a stationary flamelet library based CFD soot model for low-NOx diesel combustion. Proceedings of THIESEL2010 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, Valencia, Spain, September 14–17.
  • Nakov, G., Mauss, F., Wenzel, P., Steiner, R., Krüger, C., Zhang, Y., Rawat, R., Borg, A., Perlman, C., Fröjd, K., and Lehtiniemi, H. 2010b. Soot simulation under diesel engine conditions using a flamelet approach. SAE Int. J. Engines, 2(2), 89–104.
  • Netzell, K., Lehtiniemi, H., and Mauss, F. 2007. Calculating the soot particle size distribution function in turbulent diffusion flames using a sectional method. Proc. Combust. Inst., 31(1), 667–674.
  • Nooren, P., Wouters, H., Peeters, T., Roekaerts, D., Maas, U., and Schmidt, D. 1997. Monte Carlo PDF modelling of a turbulent natural-gas diffusion flame. Combust. Theor. Model., 1(1), 79–96.
  • Pasternak, M., and Mauss, F. 2014. Representative mixing timescale model for PDF simulations of diesel engines. Combust. Theor. Model. (Submitted).
  • Pasternak, M., Mauss, F., Janiga, G., and Thévenin, D. 2012a. Self-calibrating model for diesel engine simulations. SAE Paper 2012-01-1072.
  • Pasternak, M., Mauss, F., and Lange, F. 2011. Time dependent based mixing time modelling for diesel engine combustion simulations. Proceedings of the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Irvine, CA, July 24–29.
  • Pasternak, M., Mauss, F., Matrisciano, A., and Seidel, L. 2012b. Simulation of diesel surrogate fuels performance under engine conditions using 0D engine fuel test bench. Proceedings of the Eighth International Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA), Fukuoka, Japan, July 23–26.
  • Pasternak, M., Mauss, F., Perlman, C., and Lehtiniemi, H. 2013. Aspects of 0D and 3D modeling of soot formation for diesel engines. Proceedings of the 24th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Taipei, Taiwan, July 28-August 2.
  • Peters, N. 2000. Turbulent Combustion. Cambridge University Press, Cambridge, UK.
  • Pitsch, H., Wan, Y., and Peters, N. 1995. Numerical investigation of soot formation and oxidation under diesel conditions. SAE Paper 952357.
  • Pitz, W.J., and Mueller, C.J. 2011. Recent progress in the development of diesel surrogate fuels. Prog. Energy Combust. Sci., 37(3), 330–350.
  • Pope, S. 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci., 11(2), 119–192.
  • Priesching, P., Tatschl, R., Mauss, F., Saric, F., Netzell, K., Bauer, W., Schmid, M., Leipertz, A., Merola, S., and Vaglieco, B. 2005. Soot particle size distribution—A joint work for kinetic modelling and experimental investigations. SAE Paper 2005-01–0126.
  • Schuetz, C.A., and Frenklach, M. 2002. Nucleation of soot: molecular dynamics simulations of pyrene dimerization. Proc. Combust. Inst., 29, 2307–2314.
  • Smith, J.M., Simmie, J.M., and Curran, H.J. 2003. Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Prog. Energy Combust. Sci., 29(6), 599–634.
  • Spalding, D. 1971. Concentration fluctuations in a round turbulent free jet. Chem. Eng. Sci., 26(1), 95–107.
  • Steiner, R. 2004. Modellbildung und strömungsmechanische Simulation der dieselmotorischen Verbrennung. PhD thesis. Karlsruhe Institute of Technology, Karlsruhe, Germany.
  • Steiner, R., Bauer, C., Krüger, C., Otto, F., and Maas, U. 2004. 3-D simulation of DI- diesel combustion applying a progress variable approach accounting for complex chemistry. SAE Paper 2004-01–0106.
  • Tao, F., Reitz, R.D., and Foster, D.E. 2007. Revisit of diesel reference fuel (n-heptane) mechanism applied to multidimensional diesel ignition and combustion simulations. Seventeenth International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress, Detroit, MI, April 15.
  • Tunér, M., Pasternak, M., Mauss, F., and Bensler, H. 2008. A PDF-based model for full cycle simulations of direct injected engines. SAE Paper 2008-01–1606.
  • Wenzel, P., Gezgin, A., Steiner, R., Krüger, C., Netzell, K., Lehtiniemi, H., and Mauss, F. 2006. Modeling of the soot particle size distribution function in diesel Engines. Proceedings of THIESEL 2006 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, Valencia, Spain, September 13–15.
  • Xu, J., and Pope, S.B. 2000. PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame, 123(3), 281–307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.