349
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Investigations on Detonation Propagation in a Two-Dimensional Curved Channel

, , , &
Pages 1662-1679 | Received 18 Oct 2013, Accepted 30 Mar 2014, Published online: 30 Sep 2014

REFERENCES

  • Bykovskii, F.A., Zhdan, S.A., and Vedernikov, E.F. 2006. Continuous spin detonations. J. Propul. Power, 22, 1204.
  • Endo, T., and Fujiwara, T. 2002. A simplified analysis on a pulse detonation engine model. Trans. Jpn. Soc. Aeronaut. Space Sci., 44, 217.
  • Endo, T., Yatsufusa, T., Taki, S., and Kasahara, J. 2004. Thermodynamic analysis of the performance of a pulse detonation turbine engine. Sci. Technol. Energetic Mater., 65, 103.
  • Fickett, W., and Davis, W.C. 1979. Detonation: Theory and Experiment. University of California Press, Berkeley, CA.
  • Frolov, S.M., Aksenov, V.S., and Shamshin, I.O. 2007a. Reactive shock and detonation propagation in U-bend tubes. J. Loss Prev. Process Ind., 20, 501.
  • Frolov, S.M., Aksenov, V.S., and Shamshin, I.O. 2007b. Shock wave and detonation propagation through U-bend tubes. Proc. Combust. Inst., 31, 2421.
  • Frolov, S.M., Aksenov, V.S., and Shamshin, I.O. 2008. Propagation of shock and detonation waves in channels with U-shaped bends of limiting curvature. Russ. J. Phys. Chem. B, 2, 759.
  • Frolov, S.M., Dubrovskii, A.V., and Ivanov, V.S. 2012. Three-dimensional numerical simulation of the operation of the rotating-detonation chamber. Russ. J. Phys. Chem. B, 6, 276.
  • Frolov, S.M., Dubrovskii, A.V., and Ivanov, V.S. 2013a. Three-dimensional numerical simulation of operation process in rotating detonation engine. Prog. Propul. Phys., 4, 467.
  • Frolov, S.M., Dubrovskii, A.V., and Ivanov, V.S. 2013b. Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russ. J. Phys. Chem. B, 7, 35.
  • Gamezo, V.N., Desbordes, D., and Oran, E.S. 1999. Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves, 9, 11.
  • Hishida, M., Fujiwara, T., and Wolanski, P. 2009. Fundamentals of rotating detonation. Shock Waves, 19, 1.
  • Inaba, K. 2004. Numerical study on the dynamics of cellular structures in gaseous detonations. PhD thesis, Graduate School of Science and Technology, Keio University.
  • Kailasanath, K. 2003. Recent developments in the research on pulse detonation engines. AIAA J., 41, 145.
  • Kaneshige, M., and Shepherd, J.E. 1997. Detonation database. Technical Report FM97-8, GALCIT, July. Available at http://www2.galcit.caltech.edu/detn_db/html.
  • Korobeinikov, V.P., Levin, V.A., Markov, V.V., and Chernyi G.G. 1972. Propagation of blast waves in a combustible gas. Acta Astronaut., 17, 529.
  • Kudo, Y., Nagura, Y., Kasahara, J., Sasamoto, Y., and Matsuo, A. 2011. Oblique detonation waves stabilized in rectangular-cross-section bent tubes. Proc. Combust. Inst., 33, 2319.
  • Matsuo, A., and Fujiwara, T. 1993. Numerical investigation of oscillatory instability in shock-induced combustion around a blunt body. AIAA J., 31, 1835.
  • Nagura, Y., Kasahara, J., Sugiyama, Y., and Matsuo, A. 2012. Comprehensive visualization of detonation-diffraction structures and sized in unstable and stable mixture. Proc. Combust. Inst., 34, 1949.
  • Nakayama, H., Kasahara, J., Matsuo, A., and Funaki, I. 2013. Front shock behavior of stable curved detonation waves in rectangular-cross-section curved channels. Proc. Combust. Inst., 34, 1939.
  • Nakayama, H., Moriya, T., Kasahara, J., Matsuo, A., Sasamoto, Y., and Funaki, I. 2012. Stable detonation wave propagation in rectangular-cross-section curved channels. Combust. Flame, 159, 859.
  • Pan, Z., Fan, B., Zhang, X., Gui, M., and Dong, G. 2011. Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust. Flame, 158, 2220.
  • Pintgen, F., and Shepherd, J.E. 2009. Detonation diffraction in gases. Combust. Flame, 156, 665.
  • Roy, G.D., Frolov, S.M., Borisov, A.A., and Netzer D.W. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energy Combust. Sci., 30, 545.
  • Schwer, D., and Kailasanath, K. 2011. Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst., 33, 2195.
  • Soury, H., and Mazaheri, K. 2009. Utilizing unsteady curved detonation analysis and detailed kinetics to study the direct initiation of detonation in H2-O2 and H2-air mixtures. Int. J. Hydrogen Energy, 34, 9847.
  • Sugiyama, Y., and Matsuo, A. 2012. Numerical investigation on the detonation regime with longitudinal pulsation in circular and square tubes. Combust. Flame, 159, 3646.
  • Sugiyama, Y., and Matsuo, A. 2013. Numerical study of acoustic coupling in spinning detonation propagating in a circular tube. Combust. Flame, 160, 2457.
  • Thomas, G.O., and Williams, R.L. 2002. Detonation interaction with wedges and bends. Shock Waves, 11, 481.
  • Uemura, Y., Hayashi, A.K., Asahara, M., Tsuboi, N., and Yamada, E. 2013. Transverse wave generation mechanism in rotating detonation. Proc. Combust. Inst., 34, 1981.
  • Vasil’ev, A.A. 1999. Characteristic regimes of multifront-detonation propagation along a convex surface. Combust. Explos. Shock Waves, 35, 543.
  • Watt, S.D., and Sharpe, G.J. 2005. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech., 522, 329.
  • Yao, J., and Stewart, D.S. 1995. On the normal detonation shock velocity-curvature relationship for materials with large activation energy. Combust. Flame, 100, 519.
  • Yao, J., and Stewart, D.S. 1996. On the dynamics of multi-dimensional detonation. J. Fluid Mech., 309, 225.
  • Yee, H.C. 1987. Upstream and symmetric shock-capturing schemes. NASA Technical Memorandum 89464.
  • Zitoun, R., and Desbordes, D. 1999. Propulsive performances of pulsed detonations. Combust. Sci. Techol., 144, 93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.