238
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of a Laminar Moving Flame Front on Thermoacoustic Oscillations of an Anchored Ducted V-Flame

&
Pages 410-427 | Received 12 Sep 2013, Accepted 24 Jul 2014, Published online: 03 Sep 2014

REFERENCES

  • Balasubramanian, K., and Sujith, R.I. 2008. Non-normality and nonlinearity in combustion-acoustic interaction in diffusion flames. J. Fluid Mech., 594, 29–57.
  • Bessa, M. 2012. Perturbations of Mathieu equations with parametric excitation of large period. Adv. Dyn. Syst. Appl., 7(1), 17–30.
  • Blumenthal, R.S., Subramanian, P., Sujith, R.I., and Polifke, W. 2013. Novel perspectives on the dynamics of premixed flames. Combust. Flame, 160(7), 1215–1224.
  • Candel, S. 2002. Combustion dynamics and control: Progress and challenges. Proc. Combust. Inst., 29, 1–28.
  • Chu, B.-T. 1964. On the energy transfer to small disturbances in fluid flow. Acta Mech., 1(3), 215–234.
  • Culick, F.E.C. 1988. Combustion instabilities in liquid-fueled propulsion systems—an overview. Advis. Gr. Aerosp. Res. Dev., 450, 1–73.
  • Dowling, A.P. 1995. The calculation of thermoacoustic oscillations. J. Sound Vib., 180(4), 557–581.
  • Dowling, A.P. 1997. Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech., 346, 271–290.
  • Dowling, A.P. 1999. A kinematic model of a ducted flame. J. Fluid Mech., 394, 51–72.
  • Dowling, A.P., and Morgans, A.S. 2005. Feedback control of combustion oscillations. Annu. Rev. Fluid Mech., 37, 151–182.
  • Dowling, A.P., and Stow, S.R. 2003. Acoustic analysis of gas turbine combustors. J. Propul. Power, 19(5), 751–764.
  • Dowling, A.P., and Williams, J.E.F. 1983. Sound and Sources of Sound. Ellis Horwood Limited, Herts, UK.
  • Durox, D., Schuller, T., Noiray, N., Birbaud, A.-L., and Candel, S. 2009. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames. Combust. Flame, 156(1), 106–119.
  • Evesque, S. 2000. Adaptive control of combustion oscillations. PhD thesis. University of Cambridge, Cambridge, UK.
  • Evesque, S., Dowling, A.P., and Annaswamy, A.M. 2000. Adaptive algorithms for control of combustion. Presented at the NATO RTO/AVT Symposium on Active Control Technology for Enhanced Performance in Land, Air, and Sea Vehicles, Braunschweig, Germany.
  • Evesque, S., Dowling, A.P., and Annaswamy, A.M. 2003. Self-tuning regulators for combustion oscillations. Proc. R. Soc. London, 459, 1709–1749.
  • Fleifil, M., Annaswamy, A.M., Ghoneim, Z.A., and Ghoniem, A.F. 1996. Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results. Combust. Flame., 106, 487–510.
  • Floquet, G. 1883. Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. l’ENS, 66(2), 47–88.
  • Ghose Choudhury, A., and Guha, P. 2014. Damped equations of Mathieu type. Appl. Math. Comput., 229, 85–93.
  • Goh, C.S., and Morgans, A.S. 2013. The influence of entropy waves on the thermoacoustic stability of a model combustor. Combust. Sci. Technol., 185(2), 249–268.
  • Hemchandra, S., Peters, N., and Lieuwen, T. 2011. Heat release response of acoustically forced turbulent premixed flames-role of kinematic restoration. Proc. Combust. Inst., 33(1), 1609–1617.
  • Hield, P.A., Brear, M.J., and Jin, S.H. 2009. Thermoacoustic limit cycles in a premixed laboratory combustor with open and choked exits. Combust. Flame, 156(9), 1683–1697.
  • Illingworth, S., and Morgans, A.S. 2010. Adaptive feedback control of combustion instability in annular combustors. Combust. Sci. Technol., 182(2), 143–164.
  • Kabiraj, L., and Sujith, R.I. 2012. Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech., 713, 376–397.
  • Kashinath, K., Hemchandra, S., and Juniper, M.P. 2013. Nonlinear thermoacoustics of ducted premixed flames: The influence of perturbation convection speed. Combust. Flame, 160, 2856–2865.
  • Kerstein, A.R., Ashurst, W.T., and Williams, F.A. 1988. Field equation for interface propagation in an unsteady homogenous flow field. Phys. Rev., 37(7), 2728–2731.
  • Langhorne, P.J. 1988a. Reheat buzz: An acoustically coupled combustion instability. Part 1. Experiment. J. Fluid Mech., 193, 417–443.
  • Langhorne, P.J. 1988b. Reheat buzz: An acoustically coupled combustion instability. Part 2. Theory. J. Fluid Mech., 193, 445–473.
  • Lieuwen, T. 2003. Modeling premixed combustion—Acoustic wave interactions: A review. J. Propul. Power, 19(5), 765–781.
  • Lieuwen, T. 2005. Nonlinear kinematic response of premixed flames to harmonic velocity disturbances. Proc. Combust. Inst., 30(2), 1725–1732.
  • Lieuwen, T., and Zinn, B.T. 1998. The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines. Symp. Inst. Combust., 27(2), 1809–1816.
  • Morgans, A.S., and Annaswamy, A.M. 2008. Adaptive control of combustion instabilities for combustion systems with right-half plane zeros. Combust. Sci. Technol., 180(9), 1549–1571.
  • Morgans, A.S., Karabasov, S.A., and Dowling, A.P. 2005. Transonic helicopter noise. AIAA J., 43(7), 1512–1524.
  • Morgans, A.S., and Stow, S.R. 2007. Model-based control of combustion instabilities in annular combustors. Combust. Flame, 150, 380–399.
  • Narendra, K., and Annaswamy, A.M. 2009. Stable Adaptive Systems. Dover Publications Inc., New York.
  • Nicoud, F., and Wierczorek, K. 2009. About the zero Mach number assumption in the calculation of thermoacoustic instabilities. Int. J. Spray Combust. Dyn., 1(1), 67–111.
  • Noiray, N., Durox, D., Schuller, T., and Candel, S. 2008. A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech., 615, 139–167.
  • Peracchio, A.A., and W.M. Proscia. 1999. Nonlinear heat-release/acoustic model for thermoacoustic instability in lean premixed combustors. J. Eng. Gas Turbines Power, 121(3), 415–421.
  • Preetham, S.H., and Lieuwen, T.C. 2007. Response of turbulent premixed flames to harmonic acoustic forcing. Proc. Combust. Inst., 31(1), 1427–1434.
  • Preetham, S.H., and Lieuwen, T. 2008. Dynamics of laminar premixed flames forced by harmonic velocity disturbances. J. Propul. Power, 24(6), 1390–1402.
  • Preetham, S.H., Thumuluru, S.K., and Lieuwen, T. 2010. Linear response of laminar premixed flames to flow oscillations: Unsteady stretch effects. J. Propul. Power, 26(3), 524–532.
  • Rayleigh, J.W.S. 1878. On the instability of jets. Proc. Lond. Math. Soc., 10, 4–13.
  • Rienstra, S.W., and Hirschberg, A. 2012. An Introduction to Acoustics. Technical Report. Eindhoven University of Technology, Eindhoven, Netherlands.
  • Schuller, T., Durox, D., and Candel, S. 2003. A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and V-flame dynamics. Combust. Flame, 134, 21–34.
  • Shin, D.-H., and Lieuwen, T. 2013. Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames. J. Fluid Mech., 721, 484–513.
  • Stow, S.R., and Dowling, A.P. 2009. A time-domain network model for nonlinear thermoacoustic oscillations. J. Eng. Gas Turbines Power, 131(3), 031502.
  • Wang, C.-H., and Dowling, A.P. 2003. Actively tuned passive control of combustion instabilities. In The Combustion and Noise Control Symposium, Cranfield University Press, Bedford, UK, pp. 45–64.
  • Yuan, X., Glover, K., and Dowling, A.P. 2010. Modeling investigation for thermoacoustic oscillation control. Presented at the American Control Conference, Baltimore, MD.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.