274
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Soot Formation in Unstrained Diffusion Flames

, , , &
Pages 577-593 | Received 07 Aug 2013, Accepted 21 Aug 2014, Published online: 27 Oct 2014

REFERENCES

  • Bladh, H., Johnsson, J., and Bengtsson, P.-E. 2008. On the dependence of the laser-induced incandescence (lii) signal on soot volume fraction for variations in particle size. Appl. Phys. B, 90(1), 109–125.
  • Bladh, H., Johnsson, J., Olofsson, N., Bohlin, A., and Bengtsson, P. 2011. Optical soot characterization using two-color laser-induced incandescence (2c-lii) in the soot growth region of a premixed flat flame. Proc. Combust. Inst., 33(1), 641–648.
  • Brock, J. 1962. On the theory of thermal forces acting on aerosol particles. J. Colloid Sci., 17(8), 768–780.
  • Cheatham, S., and Matalon, M. 2000. A general asymptotic theory of diffusion flames with application to cellular instability. J. Fluid Mech., 414, 105–144.
  • Dalzell, W., and Sarofim, A.F. 1969. Optical constants of soot and their application to heat-flux calculations. J. Heat Transfer, 91, 100–104.
  • Dobbins, R.A., and Megaridis, C.M. 1987. Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir, 3(2), 254–259.
  • Epstein, P. 1929. Zur theorie des radiometers. Zeitschrift für Physik A, 54(7), 537–563.
  • Frederickson, K., Kearney, S., and Grasser, T. 2010. Quantitative laser-induced incandescence measurements of soot in turbulent pool fires. Presented at the 48th AIAA Aerospace Sciences Meeting, Orlando, Florida, January 4–7.
  • Frederickson, K., Kearney, S., and Grasser, T. 2011. Laser-induced incandescence measurements of soot in turbulent pool fires. Appl. Optics, 50(4), A49–A59.
  • Frenklach, M. 2002. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys., 4, 2028–2037.
  • Goodwin, D.G. n.d.. Cantera: Object-oriented software for reacting flows. Available at: http://www.cantera.org.
  • Height, M., Howard, J., Tester, J., and Sande, J.V. 2004. Flame synthesis of single-walled carbon nanotubes. Carbon, 42(11), 2295–2307.
  • Kang, K., and Chung, J.H.S. 1997. Soot zone structure and sooting limits in diffusion flames: Comparison of counterflow and co-flow flames. Combust. Flame, 109, 266–281.
  • Kearney, S., and Pierce, F. 2012. Evidence of soot superaggregates in a turbulent pool fire. Combust. Flame, 159, 3191–3198.
  • Kim, J., Williams, F., and Ronney, P. 1996. Diffusional-thermal instability of diffusion flames. J. Fluid Mech., 327(1), 273–301.
  • Kim, W., Sorensen, C., Fry, D., and Chakrabarti, A. 2006. Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames. J. Aerosol Sci., 37(3), 386–401.
  • Kirkby, L.L., and Schmitz, R.A. 1966. An analytical study of the stability of a laminar diffusion flame. Combust. Flame, 10(3), 205–220.
  • Merchan-Merchan, W., Saveliev, A., Kennedy, L.A., and Fridman, A. 2002. Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts. Chem. Phys. Lett., 354, 20–24.
  • Metzener, P., and Matalon, M. 2006. Diffusive-thermal instabilities of diffusion flames: Onset of cells and oscillations. Combust. Theor. Model., 10(4), 701–725.
  • Patterson, R., and Kraft, M. 2007. Models for the aggregate structure of soot particles. Combust. Flame, 151, 160–172.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci., 10, 319–339.
  • Phillips, W.F. 1975. Drag on a small sphere moving through a gas. Phys. Fluids, 18(9), 1089–1093.
  • Pitsch, H., Riesmeier, E., and Peters, N. 2000. Unsteady flamelet modeling of soot formation in turbulent diffusion flames. Combust. Sci. Technol., 158(1), 389–406.
  • Robert, E. 2008. Experimental investigation of unstrained diffusion flames and their instabilities. PhD thesis. Swiss Federal Institute of Technology, Lausanne (EPFL).
  • Robert, E. 2010. Mass spectrometer calibration over wide concentration ranges in multicomponent gas mixtures. Measure. Sci. Technol., 21, 025102.
  • Robert, E., and Monkewitz, P. 2009. Experiments in a novel quasi-1d diffusion flame with variable bulk flow. Proc. Combust. Inst., 32(1), 987–994.
  • Robert, E., and Monkewitz, P.A. 2012. Thermal-diffusive instabilities in unstretched, planar diffusion flames. Combust. Flame, 159(3), 1228–1238.
  • Robert, E., and Monkewitz, P.A. 2013. Experimental realization and characterization of unstretched planar one-dimensional diffusion flames. Combust. Flame, 160(3), 546–556.
  • Santa, K., Sun, Z., Chao, B., Sunderland, P., Axelbaum, R., Urban, D., and Stocker, D. 2007. Numerical and experimental observations of spherical diffusion flames. Combust. Theor. Model, 11(4), 639–652.
  • Schulz, C., Kock, B., Hofmann, M., Michelsen, H., Will, S., Bougie, B., Suntz, R., and Smallwood, G. 2006. Laser-induced incandescence: Recent trends and current questions. Appl. Phys. B, 83(3), 333–354.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., and Qin, Z. n.d. Gri-mech 3.0. Available at: http://www.me.berkeley.edu/gri_mech/.
  • Smooke, M., Long, M., Connelly, B., Colket, M., and Hall, R. 2005. Soot formation in laminar diffusion flames. Combust. Flame, 143(4), 613–628.
  • Sorensen, C., Kim, W., Fry, D., Shi, D., and Chakrabarti, A. 2003. Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames. Langmuir, 19, 7560–7563.
  • Stanmore, B., Brilhac, J., and Gilot, P. 2002. The oxidation of soot: A review of experiments, mechanisms and models. Carbon, 39, 2047–2068.
  • Sunderland, P., Axelbaum, R., Urban, D., Chao, B., and Liu, S. 2003. Effects of structure and hydrodynamics on the sooting behavior of spherical microgravity diffusion flames. Combust. Flame, 132, 25–33.
  • Sunderland, P., Urban, D., Stocker, D., Chao, B., and Axelbaum, R. 2004. Sooting limits of microgravity spherical diffusion flames in oxygen-enriched air diluted fuel. Combust. Sci. Technol., 176, 2143–2164.
  • Takata, S., Aoki, K., and Sone, Y. 1994. Thermophoresis of a sphere with a uniform temperature: Numerical analysis of the Boltzmann equation for hard-sphere molecules. In Progress in Astronautics and Aeronautics, Vol. 159: Rarefied Gas Dynamics: Theory and Simulations. AIAA, New York, pp. 626–639.
  • Waldmann, L. 1959. Uber die kraft eines inhomogenen gases auf kleine suspendierte kugeln. Z. Naturforsch., 14(a), 589–599.
  • Xu, F., and Faeth, G. 2001. Soot formation in laminar acetylene/air diffusion flames at atmospheric pressure. Combust. Flame, 125(1–2), 804–819.
  • Zhang, Q., Thomson, M., Guo, H., Liu, F., and Smallwood, G. 2009. A numerical study of soot aggregate formation in a laminar coflow diffusion flame. Combust. Flame, 156, 607–705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.