441
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Spray Combustion Modeling in Lean Direct Injection Combustors, Part I: Single-Element LDI

&
Pages 537-557 | Received 04 Apr 2014, Accepted 11 Sep 2014, Published online: 07 Oct 2014

REFERENCES

  • Al-Kabie, H.S., Andrews, G.E., and Ahmad, N.T. 1988. Lean low NOx primary zones using radial swirlers. ASME Paper 88-GT-245.
  • Anderson, D.N. 1981. Ultra lean combustion at high inlet temperatures. ASME 81-GT-44.
  • ANSYS Inc. 2013. Ansys Fluent Theory Guide, 15th ed., ANSYS, Inc., Canonsburg, PA.
  • Beer, J.M., and Chigier, N. 1972. Combustion Aerodynamics, Applied Science Publishers, London.
  • Cai, J., Jeng, S.-M., and Tacina, R. 2002. Multi-swirler aerodynamics: Comparison of different configurations. ASME Paper GT2002-30464.
  • Cai, J., Jeng, S.-M., and Tacina, R. 2005. The structure of a swirl-stabilized reacting spray issued from an axial swirler. AIAA-2005-1424. Presented at the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10–13.
  • Dewanji, D. 2012. Flow characteristics in lean direct injection combustors. PhD thesis. Delft University of Technology, Delft, Netherlands.
  • Dewanji, D., and Rao, A.G. 2015. Spray combustion modeling in lean direct injection combustors, Part II: Multi-point LDI. Combust. Sci. Technol., 187(4), 558–576.
  • Dewanji, D., Rao, A.G., Pourquie, M., and van Buijtenen, J.P. 2011. Numerical study of non-reacting and reacting flow characteristics in a lean direct injection combustor. ASME Paper GT2011-45263.
  • Dewanji, D., Rao, A.G., Pourquie, M., and van Buijtenen, J.P. 2012. Investigation of flow characteristics in lean direct injection combustors. AIAA J. Propul. Power, 28(1), 181–196.
  • Dewanji, D., Rao, A.G., and van Buijtenen, J.P. 2009. Conceptual study of future aero-engine concepts. Int. J. Turbo Jet Engines, 26, 263–276.
  • Dombrowski, N., and Hooper, P.C. 1962. The effect of ambient density or drop formation in sprays. Chem. Eng. Sci., 17, 291–305.
  • Dukowicz, J.K. 1980. A particle-fluid numerical model for liquid sprays. J. Comp. Phys., 35, 229–253.
  • Dunn-Rankin, D. (Ed.) 2008. Lean Combustion: Technology and Control, Academic Press, San Diego, CA.
  • El-Asrag, H., Ham, F., and Pitsch, H. 2007. Simulation of a lean direct injection combustor for the next high speed civil transport (HSCT) vehicle combustion systems. Tech. Rep., Annual Research Briefs. Center for Turbulence Research, Stanford, CA.
  • Fraser, R.P., Eisenklam, P., Dombrowski, N., and Hasson, D. 1962. Drop formation from rapidly moving liquid sheets. Am. Inst. Chem. Eng. J., 8(5), 672–680.
  • Heath, M.C., Hicks, R.Y., Anderson, R.C., and Locke, R.J. 2010. Optical characterization of a multipoint lean direct injector for gas turbine combustors: Velocity and fuel drop size measurements. ASME Paper GT2010-22960.
  • Hussain, U.S., Andrews, G.E., Cheung, W.G., and Shahabadi, A.R. 1988. Low NOx primary zones using jet mixing shear layer combustion. ASME Paper 88-GT-308.
  • Iannetti, A.C., and Moder, J.P. 2010. Comparing spray characteristics from RANS NCC calculations against experimental data for a turbulent reacting flow. AIAA Paper 2010–578.
  • Kader, B. 1981. Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transfer, 24(9), 1541–1544.
  • Kendil, F., Salah, A.B., and Mataoui, A. 2010. Assessment of three turbulence model performances in predicting water jet flow plunging into a liquid pool. Nucl. Tech. Radiat. Prot., 25(1), 13–22.
  • Lamb, H. 1994. Hydrodynamics, 6th Ed., Cambridge University Press, Cambridge, UK.
  • Lefebvre, A.H. 1989. Atomization and Sprays, Hemisphere Publishing Corporation, New York.
  • Lefebvre, A.H. 1998. Gas Turbine Combustion, 2nd Ed., Taylor & Francis, London.
  • Lew, H.G., Carl, D.R., Vermes, G., and DeZubay, E.A. 1981. Low NOx heavy fuel com bustor concept program. Phase 1: Combustion technology generation. Tech. Rep. CR-165482, NASA.
  • Liu, A.B., Mather, D., and Reitz, R.D. 1993. Modeling the effects of drop drag and breakup of fuel sprays. SAE Technical Paper 930072.
  • Liu, N.-S. 2011. Assessment and improvement of engineering simulation for multiphase turbulent combustion in a lean direct injection combustor. ISABE-2011-1108.
  • Liu, N.-S., Shih, T.-H., and Wey, C.T. 2011. Numerical simulations of two-phase reacting flow in a single-element lean direct injection (LDI) combustor using NCC. NASA/TM-2011-217031.
  • Nguyen, L.H., and Bittker, D.A. 1989. Investigation of low NOx staged combustor concept in highspeed civil transport engines. Tech. Rep. TM 101977, NASA.
  • Novick, A., and Troth, D.L. 1981. Low NOx heavy fuel combustor concept. Tech. Rep. CR-165367, NASA.
  • O’Rourke, P.J. 1981. Collective drop effects on vaporizing liquid sprays. PhD thesis, Princeton University, Princeton, NJ.
  • Patel, N., and Menon, S. 2008. Simulation of spray-turbulence-flame interactions in a lean direct injection combustor. Combust. Flame, 153, 228–257.
  • Pattamatta, A., and Singh, G. 2012. Assessment of turbulence models in the prediction of flow field and thermal characteristics of wall jet. Front. Heat Mass Transfer, 3(2), 1–11.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, 2nd Ed., R. T. Edwards, Inc., Philadelphia, PA.
  • Reitz, R.D. 1987. Modeling atomization processes in high-pressure vaporizing sprays. Atomization Spray Technol., 3, 309–337.
  • Reitz, R.D., and Bracco, F.V. 1982. Mechanism of atomization of a liquid jet. Phys. Fluids, 25, 1730–1742.
  • Rosfjord, T.J. 1981. Evaluation of synthetic fuel character effects on rich-lean stationary gas turbine combustion systems. Vol. 1: Subscale test program. Tech. Rep. AP-2822, Electric Power Research Institute, Palo Alto, CA.
  • Schmidt, D.P., Nouar, I., Senecal, P.K., Rutland, C.J., Martin, J.K., and Reitz, R.D. 1999. Pressure-swirl atomization in the near field. SAE Paper 01-0496.
  • Schultz, D.F., and Wolfbrandt, G. 1980. Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two stage combustion. Tech. Rep. TM-81472, NASA.
  • Senecal, P., Schmidt, D., Nouar, I., Rutland, C., Reitz, R., and Corradini, M. 1999. Modeling high-speed viscous liquid sheet atomization. Int. J. Multiphase Flow, 25, 1073–1097.
  • Shih, T.-H., and Liu, N.-S. 2009. A very large eddy simulation of the nonreacting flow in a singleelement lean direct injection combustor using PRNS with a nonlinear subscale model. Tech. Rep. NASA/TM 2009-215644.
  • Shis, T.-H., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J. 1995. A new eddy viscosity model for high Reynolds number turbulent flows-model development and validation. Comput. Fluids, 24(3), 227–238.
  • Tacina, R., Lee, P., and Wey, C. 2005. A lean direct injection combustor using a 9 point swirl-venturi fuel injector. ISABE 2005-1106.
  • Tacina, R., Mao, C.P., and Wey, C. 2004. Experimental investigation of a multiplex fuel injector module with discrete jet swirlers for low emission combustors. Tech. Rep. NASA/TM 2004-212918.
  • Tacina, R., Mao, C.-P., and Wey, C.-M. 2003. Experimental investigation of a multiplex fuel injector module for low emission combustors. AIAA Paper 2003-0827.
  • Tacina, R., Wey, C., Laing, P., and Mansour, A. 2002a. A low NOx lean-direct injection, multipoint integrated module combustor concept for advanced aircraft gas turbines. Tech. Rep. NASA/TM-2002-211347.
  • Tacina, R., Wey, C., Laing, P., and Mansour, A. 2002b. Sector tests of a low-NOx, lean direct injection, multipoint integrated module combustor concept. ASME Paper GT-2002-30089.
  • Weber, C. 1931. Zum zerfall eines flüssigkeitsstrahles. J. Appl. Mech., 11(2), 136–154.
  • Williams, F.A. 1985. Combustion Theory, 2nd Ed., Addison-Wesley Publishing Co., Reading, MA.
  • Yeoh, G.H., and Tu, J. 2009. Computational Techniques for Multiphase Flows, Elsevier, Oxford, UK.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.