277
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Decomposition and Ignition Characteristics of Titanium Hydride at High Heating Rates

, , &
Pages 1182-1194 | Received 03 Mar 2014, Accepted 11 Feb 2015, Published online: 05 May 2015

REFERENCES

  • Ahluwalia, R.K., Hua, T.Q., and Peng, J.K. 2009. Automotive storage of hydrogen in alane. Int. J. Hydrogen Energy, 34, 7731–7740.
  • Anderson, K., and Fleshman, W.S. 1950. Reactivity of titanium hydride with air. Ind. Eng. Chem., 42(7), 1381–1383.
  • Badiola, C., and Dreizin, E.L. 2013. Combustion of micron-sized particles of titanium and zirconium. Proc. Combust. Inst., 34(2), 2237–2243.
  • Borchers, C., Khomenko, T.I., Leonov, A.V., and Morozova, O.S. 2009. Interrupted thermal desorption of TiH2. Thermochim. Acta, 493(1–2), 80–84.
  • Clark, A.F., Moulder, J.C., and Runyan, C.C. 1975. Combustion of bulk titanium in oxygen. Proc. Combust. Inst., 15(1), 489–499.
  • Connell, T.L., Risha, G.A., Yetter, R.A., Young, G., Sundaram, D.S., and Yang, V. 2011. Combustion of alane and aluminum with water for hydrogen and thermal energy generation. Proc. Combust. Inst., 33(2), 1957–1965.
  • Fokin, V., Malov, Y., Fokina, S., Troitskaya, S., and Shilkin, S. 1995. Investigation of interactions in the TiH2-O2 system. Int. J. Hydrogen Energy, 20(5), 387–389.
  • Gromov, A.R., Kouznetsov, N.N., Yuding, S.L., and Lunin, V.V. 1997. The investigation of titanium hydride oxidation process. J. Alloys Compd., 261(1–2), 269–272.
  • Harrison, P.L. 1958. The combustion of titanium and zirconium. Proc. Combust. Inst., 7(1), 913–918.
  • Hartman, I. 1951. The explosibility of titanium, zirconium, thorium, uranium, and their hydrides. USAEC Report No. 40-1562, Bureau of Mines.
  • Illekova, E., Harnuskova, J., Florek, R., Simancik, J., Matko, I., and Svec Sr., P. 2011. Peculiarities of TiH2 decomposition. J. Therm. Anal. Calorim., 105(2), 583–590.
  • Jian, G., Chowdhury, S., Sullivan, K., and Zachariah, M.R. 2013. Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame, 160(2), 432–437.
  • Kennedy, A.R. 2002. The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 preforms. Scr. Mater., 47, 763–767.
  • Kennedy, A.R., and Lopez, V.H. 2003. The decomposition behavior or as-received and oxidized TiH2 foaming-agent powder. Mater. Sci. Eng., A357, 258–263.
  • Liu, H., He, P., Heng, J.C., and Cao, J. 2009. Kinetic study on nonisothermal dehydrogenation of TiH2. Int. J. Hydrogen Energy, 34, 3018–3025.
  • Matijasevic-Lux, B., Banhart, J., Fiechter, S., Gorke, O., and Waderka, N. 2006. Modification of titanium hydride for improved aluminum foam manufacture. Acta Mater., 54, 1887–1900.
  • Molodetsky, I.E., Vicenzy, E.P., Dreizen, E.L., and Law, C.K. 1998. Phases of titanium combustion in air. Combust. Flame, 112(4), 522–532.
  • Ozawa, T. 1965. A new method for analyzing thermogravimteric data. Bull. Chem. Soc. Jpn., 38, 1881.
  • Ozawa, T. 1970. Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal., 2, 301.
  • Rasooli, A., Boutorabi, M.A., and Divandari, M. 2013. The effect of high heating rate on the thermal decomposition behavior of titanium hydride (TiH2) powder in air. Bull. Mater. Sci., 36(2), 301–309.
  • Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M. 2007. Metal hydride materials for solid hydrogen storeage: A review. Int. J. Hydrogen Energy, 32, 1121–1140.
  • Samal, S., Cho, S., Park, D.W., and Kim, H. 2012. Thermal characterization of titanium hydride in thermal oxidation process. Thermochem. Acta, 542, 46–51.
  • Shafirovich, E., Teoh, S.K., and Varma, A. 2008. Combustion of levitated titanium particles in air. Combust. Flame, 152(1–2), 262–271.
  • Shark, S.C., Pourpoint, T.L., Son, S.F., and Heister, S.D. 2013. Performance of dicyclopentadiene-based hybrid rocket motors with metal hydride additives. J. Propul. Power, 29(5), 1122–1129.
  • Stepura, G., Rosenband, V., and Gany, A. 2012. A model for the decomposition of titanium hydride and magnesium hydride. J. Alloys Compd., 513, 159–164.
  • Young, G., Piekiel, N., Chowdhury, S., and Zachariah, M.R. 2010a. Ignition behavior of α-alane. Combust. Sci. Technol., 182(7), 1341–1359.
  • Young, G., Risha, G.A., Miller, A.G., Glass, R.A., Connell, T.L., and Yetter, R.A. 2010b. Combustion of alane-based solid fuels. Int. J. Energetic Mater. Chem. Propul., 9(3), 249–266.
  • Young, G., Jacob, R., and Zachariah, M.R. In press. High pressured ignition and combustion of aluminum hydride. Combust. Sci. Technol. DOI: 10.1080/00102202.2015.1038383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.