1,016
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

, , &
Pages 1263-1275 | Received 17 Dec 2014, Accepted 23 Mar 2015, Published online: 12 May 2015

REFERENCES

  • Dryer, F.L., Wooldridge, M.S., Peterson, E.L., McDonell, V.G., and Im, H.G. 2014. Panel discussion: Ignition delay issue. Presented at the United States Department of Energy University Turbine Systems Research (UTSR) meeting, October 21, 2014.
  • Gupta, S., Im, H.G., and Valorani, M. 2013. Analysis of n-heptane auto-ignition characteristics using computational singular perturbations. Proc. Combust. Inst., 34, 1125–1133.
  • Ihme, M. 2012. On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combust. Flame, 159, 1592–1604.
  • Javed, T., Es-sebbar, E., Jaasim, M., Badra, J., Im, H.G., and Farooq, A. 2015. Interpreting low-temperature shock tube ignition delay data. Presented at the 7th European Combustion Meeting, Budapest, Hungary, March 30–April 2.
  • Kee, R., Rupley, F., and Miller, J. 1989. CHEMKIN-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. SAND89-8009, Sandia National Laboratories.
  • Kim, S.O., Luong, M.B., Chen, J.H., and Yoo, C.S. 2015. A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature. Combust. Flame, 162(3), 717–726.
  • Lavoie, G.A., Martz, J.B., Wooldridge, M.S., and Assanis, D.N. 2010. A multi-mode combustion diagram for spark assisted compression ignition. Combust. Sci. Tech., 157(6), 1106–1110.
  • Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F.L., and Scire, J.J. 2007. A comprehensive kinetic mechanism for CO, CH2O and CH3OH combustion. Int. J. Chem. Kinet., 39, 109–136.
  • Lieuwen, T., McDonell, V., Santavicca, D., and SattelMayer, T. 2008. Burner development and operability issues associated with steady flowing syngas fired combustors. Combust. Sci. Technol., 180(6), 1169–1192.
  • Lieuwen, T.C., and Yang, V. ( Eds). 2013. Gas Turbine Emissions, Cambridge Aerospace Series, Book 38, Cambridge University Press, Cambridge, UK, Ch. 1–2.
  • Linan, A., and Williams, F.A. 1993. Fundamental Aspects of Combustion, Oxford University Press, New York.
  • Mansfield, A.B., and Wooldridge, M.S. 2014. High-pressure low-temperature ignition behavior of syngas mixtures. Combust. Flame, 161(9), 2242–2251.
  • Mansfield, A.B., Wooldridge, M.S., Di, H., and He, X. 2015. Low-temperature ignition behavior of iso-octane. Fuel, 139, 79–86.
  • Meyer, J.W., and Oppenheim, A.K. 1971. On the shock-induced ignition of explosive gases. Proc. Combust. Inst., 13, 1153–1164.
  • Mittal, G., Sung, C.J., and Yetter, R.A. 2006. Autoignition of H2/CO at elevated pressures in a rapid compression machine. Int. J. Chem. Kinet., 38, 516–529.
  • Oran, E.S., and Borris, J.P. 1982. Weak and strong ignition. II. Sensitivity of the hydrogen-oxygen system. Combust. Flame, 48, 149–161.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK, Ch. 2.
  • Petersen, E.L., Kalitan, D.M., Barrett, A.B., Reehal, S.C., Mertens, J.D., Beerer, D.J., Hack, R.L., and McDonell, V.G. 2007. New syngas/air ignition data at low temperature and elevated pressure and comparison to current kinetic models. Combust. Flame, 149, 244–247.
  • Richards, G.A., McMillian, M.M., Gemmen, R.S., Rogers, W.A., and Cully, S.R. 2001. Issues for low-emission, fuel-flexible power systems. Prog. Energy Combust., 27(2): 141–169.
  • Sankaran, R., Im, H.G., Hawkes, E.R., and Chen, J.H. 2005. The effects of non-uniform temperature distribution on the ignition of a lean hydrogen-air mixture. Proc. Combust. Inst., 30, 875–882.
  • Tennekes, H., and Lumley, J.L. 1972. A First Course in Turbulence, MIT Press, Cambridge, MA.
  • United States Department of Energy. 2009. Hydrogen from Coal Program—Research, Development and Demonstration Plan. Available at: http://fossil.energy.gov/programs/fuels/publications/ programplans/2009_Draft_H2fromCoal_Sept30_web.pdf
  • Uygun, Y., Ishihara, S., and Olivier, H. 2014. A high pressure ignition delay time study of 2-methylfuran and tetrahydrofuran in shock tubes. Combust. Flame, 161, 2519–2530.
  • Walton, S.M., He, X., Zigler, B.T., and Wooldridge, M.S. 2007. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proc. Combust. Inst., 31, 3147–3154.
  • Wu, H., and Ihme, M. 2014. Effects of flow-field and mixture inhomogeneities on the ignition dynamics in continuous flow reactors. Combust. Flame, 161, 2317–2326.
  • Yoo, C.S., Lu, T., Chen, J.H., and Law, C.K. 2011. Direct numerical simulations of ignition of lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study. Combust. Flame, 158, 1727–1741.
  • Zeldovich, Y.B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame, 39, 211–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.