247
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Electro-Static Discharge Ignition of Monolayers of Nanocomposite Thermite Powders Prepared by Arrested Reactive Milling

, , &
Pages 1276-1294 | Received 27 Nov 2014, Accepted 25 Mar 2015, Published online: 12 May 2015

REFERENCES

  • Beloni, E., and Dreizin, E.L. 2009. Experimental study of ignition of magnesium powder by electrostatic discharge. Combustion Flame, 156(7), 1386–1395.
  • Beloni, E., and Dreizin, E.L. 2012. Model of heating and ignition of conductive polydisperse powder in electrostatic discharge, Combust. Theor. Model., 16(6), 976–993.
  • Beloni, E., Santhanam, P.R., and Dreizin, E.L. 2012. Electrical conductivity of a metal powder struck by a spark. J. Electrostat., 70(1), 157–165.
  • Bulian, C.J., Puszynski, J.A., and Swiatkiewicz, J.J. 2007. Ignition sensitivity of nanoenergetics produced by various processing methods. Presented at the AIChE Annual Meeting, Conference Proceedings, Salt Lake City, UT, November 4–9.
  • Cabrera, N., and Mott, N.F. 1949. Theory of the oxidation of metals. Rep. Prog. Phys., 12(1), 163–184.
  • Dreizin, E.L. 2000. Phase changes in metal combustion. Prog. Energy Combust. Sci., 26(1), 57–78.
  • Dreizin, E.L., Badiola, C., Zhang, S., and Aly, Y. 2011. Particle combustion dynamics of metal-based reactive materials. Int. J. Energy Mater. Chem. Propul., 10(4), 22.
  • Dreizin, E.L., and Schoenitz, M. 2009. Nano-composite energetic powders prepared by arrested reactive milling. U.S. Patent No. 7,524,355.
  • Dreizin, E.L., Suslov, A.V., and Trunov, M.A. 1993. General trends in metal particles heterogeneous combustion. Combust. Sci. Technol., 90(1–4), 79–99.
  • Foley, T., Pacheco, A., Malchi, J., Yetter, R., and Higa, K. 2007. Development of nanothermite composites with variable electrostatic discharge ignition thresholds. Propellant Explos. Pyrotech., 32(6), 431–434.
  • Higa, K.T. 2007. Energetic nanocomposite lead-free electric primers. J. Propul. Power, 23(4), 722–727.
  • Johnson, C.E., Higa, K.T., Tran, T.T., and Albro, W.R. 2011. Thermite initiation processes and thresholds. Mater. Res. Soc. Symp. Proc., 1405, 37–42.
  • Manea, S., Gonçalves, R.F.B., Machado, F.B.C., Iha, K., Rocco, J.A.F.F., and Suárez Iha, M.E.V. 2009. Electrical and electrostatic discharge solid rocket booster ignition. Presented at the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, August 2–5.
  • Meek, J.M. 1940. A theory of spark discharge. Phys. Rev., 57(8), 722–728.
  • Olsen, H.L., Edmonson, R.B., and Gayhart, E.L. 1952. Microchronometric Schlieren study of gaseous expansion from an electric spark. J. Appl. Phys., 23(10), 1157–1162.
  • Pearse, R.W.B., and Gaydon, A.G. 1976. The Identification of Molecular Spectra, 4th edn., Chapman and Hall, London, p. 397.
  • Roux, M., Auzanneau, M., and Brassy, C. 1993. Electric spark and ESD sensitivity of reactive solids (primary or secondary explosive, propellant, pyrotechnics). Part One: Experimental results and reflection factors for sensitivity test optimization. Propellant Explos. Pyrotech., 18(6), 317–324.
  • Shaw, W.L., Dlott, D.D., Williams, R.A., and Dreizin, E.L. 2014. Ignition of nanocomposite thermites by electric spark and shock wave. Propellant Explos. Pyrotech., 39(3), 444–453.
  • Skinner, D., Olson, D., and Block-Bolten, A. 1998. Electrostatic discharge ignition of energetic materials. Propellant Explos. Pyrotech., 23(1), 34–42.
  • Stamatis, D., Ermoline, A., and Dreizin, E.L. 2012. A multi-step reaction model for ignition of fully-dense Al·CuO nanocomposite powders. Combust. Theor. Model., 16(6), 976–993.
  • Stamatis, D., Jiang, X., Beloni, E., and Dreizin, E.L. 2010. Aluminum burn rate modifiers based on reactive nanocomposite powders. Propellant Explos. Pyrotech., 35(3), 260–267.
  • Stamatis, D., Zhu, X., Ermoline, A., Schoenitz, M., Dreizin, E.L., and Redner, P. 2011. Consolidation and mechanical properties of reactive nanocomposite powders. Powder Technol., 208(3), 637–642.
  • Weir, C., Pantoya, M.L., and Daniels, M.A. 2013. The role of aluminum particle size in electrostatic ignition sensitivity of composite energetic materials. Combust. Flame, 160(10), 2279–2281.
  • Williams, R.A., Beloni, E., and Dreizin, E.L. 2012. Ignition of metal powder layers of different thickness by electrostatic discharge. J. Propul. Power, 28(1), 132–139.
  • Williams, R.A., Patel, J.V., and Dreizin, E.L. 2014b. Ignition of fully dense nanocomposite thermite powders by an electric spark. J. Propul. Power, 30(3), 764–774.
  • Williams, R.A., Patel, J.V., Ermoline, A., Schoenitz, M., and Dreizin, E.L. 2013. Correlation of optical emission and pressure generated upon ignition of fully-dense nanocomposite thermite powders. Combust. Flame, 160(3), 734–741.
  • Williams, R.A., Schoenitz, M., and Dreizin, E.L. 2014a. Validation of the thermal oxidation model for Al/CuO nanocomposite powder. Combust. Sci. Technol., 186(1), 47–67.
  • Williams, R.A., Schoenitz, M., Ermoline, A., and Dreizin, E.L. 2014c. Low-temperature exothermic reactions in fully-dense Al/MoO3 nanocomposite powders. Thermochim. Acta, 594, 1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.