513
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

High Pressure Ignition and Combustion of Aluminum Hydride

, &
Pages 1335-1350 | Received 23 Sep 2013, Accepted 02 Apr 2015, Published online: 26 May 2015

REFERENCES

  • Ahluwalia, R.K., Hua, T.Q., and Peng, J.K. 2009. Automotive storage of hydrogen in alane. Int. J. Hydrogen Energy, 34, 7731–7740
  • Bazyn, T., Eyer, R., Krier, H., and Glumac, N. 2004. Combustion characteristics of aluminum hydride at elevated pressure and temperature. J. Propul. Power, 20(3), 427–431.
  • Bazyn, T., Krier, H., and Glumac, N. 2005. Oxidizer and pressure effects on the combustion of 10-mm aluminum particles. J. Propul. Power, 21(4), 577–582.
  • Bazyn, T., Krier, H., Glumac, N., Shankar, N., Wang, X., and Jackson, T.L. 2007. Decomposition of aluminum hydride under solid rocket motor conditions. J. Propul. Power, 23(2), 457–464.
  • Beckstead, M.W. 2005. Correlating aluminum burning times. Combust. Explos. Shock Waves, 41(5), 533–546.
  • Belyaev, A.F., Frolov, Y.V., and Korotkov, A.I. 1968. Combustion and ignition of particles of finely dispersed aluminum. Combust. Explos. Shock Waves, 4(3), 323–329.
  • Brzustowski, T.A., and Glassman, I. 1964. Vapor-phase diffusion flames in the combustion of magnesium and aluminum: II. Experimental observations in oxygen atmosphere. In Heterogeneous Combustion, AIAA, Progress in Astronautics and Aeronautics Series, vol. 15, Academic Press, New York, NY, pp. 117–158.
  • Bucher, P., Yetter, R.A., and Dryer, F.L. 1996. Flame structure measurement of single, isolated aluminum particles burning in air. Proc. Combust. Inst., 26(2), 1899–1908.
  • Bucher, P., Yetter, R.A., Dryer, F.L., Parr, T.P., and Hanson-Parr, D.M. 1998. PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2, and N2O oxidizers, and comparison with model calculations. Proc. Combust. Inst., 27(2), 2421–2429.
  • Bucher, P., Yetter, R.A., Dryer, F.L., Vicenzi, E.P., Parr, T.P., and Hanson-Parr, D.M. 1999. Condensed-phase species distributions about Al particles reacting in various oxidizers. Combust. Flame, 117(1–2), 351–361.
  • Castro, F.J., and Meyer, J. 2002. Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): Theoretical aspects. J. Alloys Compd., 330–332, 59–63.
  • Connell, T.L., Risha, G.A., Yetter, R.A., Young, G., Sundaram, D.S., and Yang, V. 2011 Combustion of alane and aluminum with water for hydrogen and thermal energy generation. Proc. Combust. Inst., 33(2), 1957–1965.
  • Deluca, L.T., Galfetti, L., Severini, F., Rossettini, L., Meda, L., Marra, G., D’Andrea, B., Weiser, V., Calabro, M., Vorozhtsov, A.B., Glazunov, A.A., and Pavlovets, G.J. 2007. Physical and ballistic characterization of AlH3-based space propellants. Aerosp. Sci. Technol., 11, 18–25.
  • Drew, C.M., Gordon, A.S., and Knipe, R.H. 1964. Study of quenched aluminum particle combustion. In Heterogeneous Combustion, AIAA, Progress in Astronautics and Aeronautics Series, vol. 15, Academic Press, New York, NY, pp. 17–39.
  • Friedman, R., and Macek, A. 1963. Combustion studies of single aluminum particles. Proc. Combust. Inst., 9, 703–712.
  • Frolov, Y.V., Pokhil, P.F., and Logachev, V.S. 1972. Ignition and combustion of powdered aluminum in high temperature gaseous media and in a composition of heterogeneous condensed systems. Combust. Explos. Shock Waves, 8(2), 213–236.
  • Gordon, A.S., Drew, C.M., Prentice, J.L., and Knipe, R.H. 1968. Techniques for the study of the combustion of metals. AIAA J., 6(4), 577–583.
  • Graetz, J., and Reilly, J.J. 2005. Decomposition kinetics of the AlH3 polymorphs. J. Phys. Chem. B, 109, 22181–22185.
  • Graetz, J., and Reilly, J.J. 2006. Thermodynamics of the α, β, and γ polymorphs of AlH3. J. Alloys Compd., 424, 262–265.
  • Graetz, J., Reilly, J.J., Kulleck, J.G., and Bowman, R.C. 2007. Kinetics and thermodynamics of the aluminum hydride polymorphs. J. Alloys Compd., 446–447, 271–275.
  • Hu, E., Huang, Z., He, J., and Miao, H. 2009. Experimental and numerical study on laminar burning velocities and flame instabilities of hydrogen-air mixtures at elevated pressures and temperatures. Int. J. Hydrogen Energy, 34, 8741–8755.
  • Il’in, A.P., Bychin, N.V., and Gromov, A.A. 2001. Products of combustion of aluminum hydride in air. Combust. Explos. Shock Waves, 37(4), 490–491.
  • Ismail, I.M.K., and Hawkins, T. 2005. Kinetics of thermal decomposition of aluminum hydride: I-non-isothermal under vacuum and in inert atmosphere (argon). Thermochim. Acta, 439, 32–43.
  • Kruetz, T.G., and Law, C.K. 1996. Ignition in nonpremixed counterflowing hydrogen verses heated air: Computational study with detailed chemistry. Combust. Flame, 104(1–2), 157–175.
  • Kuryavtsev, V.M., Sukhov, A.V., Voronetskii, A.V., and Shpara, A.P. 1979. High-pressure combustion of metals (three zone model). Combust. Explos. Shock Waves, 15(6), 50–57.
  • Law, C.K. 1973. A simplified theoretical model for the vapor-phase combustion of metal particles. Combust. Sci. Technol., 7(5), 197–212.
  • Lewis, B., and Von Elbe, G. 1987. Combustion, Flames and Explosions of Gases, 3rd ed., Academic Press, New York.
  • Macek, A. 1967.Fundamentals of combustion of single aluminum and beryllium particles. Proc. Combust. Inst., 11, 203–217.
  • McBride, B.J., and Gordon, S. 1996. Computer Program for Calculation of Complex Equilibrium Compositions and Applications II, NASA Reference Publication 1311, Washington, D.C.
  • Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M. 2007. Metal hydride materials for solid hydrogen storeage: A review. Int. J. Hydrogen Energy, 32, 1121–1140.
  • Sartori, A., Istad-Lem, A., Brinks, H.W., and Hauback, B.C. 2009. Mechanochemical synthesis of alane. Int. J. Hydrogen Energy, 34, 6350–6356.
  • Shark, S.C., Pourpoint, T.L., Son, S.F., and Heister, S.D. 2013. Performance of dicyclopentadiene/H2O2-based hybrid rocket motors with metal hydride additives. J. Propul. Power, 29(5), 1122–1129.
  • Son, S.F., Dye, R.C., Busse, J.R., Sandstrom, M.M., Oschwald, D.M., and Janicke, M.T. 2003. Combustion of nanoaluminum in air. In Proceedings of JANNAF Subcommittee Meeting, Colorado Springs, CO, December 1–5; Chemical Propulsion Information Agency, Columbia, MD.
  • Young, G., Piekiel, N., Chowdhury, S., and Zachariah, M.R. 2010a. Ignition behavior of α-alane. Combust. Sci. Technol., 182(7), 1341–1359.
  • Young, G., Risha, G.A., Miller, A.G., Glass, R.A., Connell, T.L., and Yetter, R.A. 2010b. Combustion of alane-based solid fuels. Int. J. Energetic Mater. Chem. Propul., 9(3), 249–266.
  • Zheng, X.L., and Law, C.K. 2004. Ignition of premixed hydrogen/air by heated counterflow under reduced and elevated pressures. Combust. Flame, 136(1–2), 168–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.