261
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of an Equivalent Reaction Networks Approach for Premixed Combustion

&
Pages 1705-1723 | Received 23 Oct 2014, Accepted 03 Jun 2015, Published online: 19 Aug 2015

References

  • Amzin, S., Swaminathan, N., Rogerson, J., and Kent, J.H. 2012. Conditional moment closure for turbulent premixed flames. Combust. Sci. Technol., 184, 1–25.
  • Andreini, A., and Facchini, B. 2004. Gas turbines design and off-design performance analysis with emissions evaluation. J. Eng. Gas Turbines Power, 126(1), 83–91.
  • ANSYS. 2009. ANSYS Fluent 12.0 User’s Guide. ANSYS, Inc., Canonsburg, PA.
  • Benedetto, D., Pasini, S., Falcitelli, M., La Marca, C., and Tognotti, L. 2000. NOx emission prediction from 3-D complete modelling to reactor network analysis. Combust. Sci. Technol., 153(1), 279–294.
  • Bilger, R.W. 1993. Conditional moment closure for turbulent reacting flow. Phys. Fluids A, 5(2), 436–444.
  • Bilger, R.W. 2000. Future progressin turbulent combustion research. Prog. Energy Combust. Sci., 26, 367–380.
  • Bilger, R.W., Pope, S.B., Bray, K.N.C., and Driscoll, J.F. 2005. Paradigms in turbulent combustion research. Proc. Combust. Inst., 30, 21–42.
  • Bragg, S.L. 1953. Application reaction rate theory to combustion chamber analysis. Aeronautical Research Council Pub. ARC 16170, Ministry of Defense, London, England, 1629–1633.
  • Brewster, B.S., Cannon, S.M., Farmer, J.R., and Meng, F. 1999. Modeling of lean premixed combustion in stationary gas turbines. Prog. Energy Combust. Sci., 25(4), 353–385.
  • Chen, Y.C., Peters, N., Schneemann, G.A., Wruk, N., Renz, U., and Mansour, M.S. 1996. The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame, 3, 223–226.
  • Correa, S.M. 1993. A review of NOx formation under gas turbine combustion condition. Combust. Sci. Technol., 87(1–6), 329–362.
  • Driscoll, J.F. 2008. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci., 34(1), 91–134.
  • Falcitelli, M., Pasini, S., Rossi, N., and Tognotti, L. 2002a. CFD+reactor network analysis: An integrated methodology for the modelling and optimisation of industrial systems for energy saving and pollution reduction. Appl. Therm. Eng., 22, 971–979.
  • Falcitelli, M., Tognotti, L., and Pasini, S. 2002b. An algorithm for extracting chemical reactor network models from CFD simulation of industrial combustion systems. Combust. Sci. Technol., 174(11–12), 27–42.
  • Faravelli, T., Antichi, A., Callierotti, C., Ranzi, E., and Benedetto, D. 1997. A kinetic study of an advanced reburning process. Combust. Theor. Model., 1, 377–393.
  • Faravelli, T., Bua, L., Frassoldati, A., Antiflora, A., Tognotti, L., and Ranzi, E. 2001. A new procedure for predicting NOx emissions from furnaces. Comput. Chem. Eng., 25(4–6), 613–618.
  • Fichet, V., Kanniche, M., Plion, P., and Gicquel, O. 2010. A reactor network model for predicting NOx emissions in gas turbines. Fuel, 89, 2202–2210.
  • Frassoldati, A., Frigerio, S., Colombo, E., Inzoli, F., and Faravelli, T. 2005. Determination of emissions from strong swirling confined flames with an integrated CFD-based procedure. Chem. Eng. Sci., 60(11), 2851–2869.
  • Goodwin, D. 2002. CANTERA: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Caltech, Pasadena, CA.
  • Herrmann, M. 2006. Numerical simulation of turbulent Bunsen flames with a level set flamelet model. Combust. Flame, 145, 357–375.
  • Heywood, J.B. 1976. Pollutant formation and control in spark ignition engines. Prog. Energy Combust. Sci., 1, 135–164.
  • Houghton, R.A. 2003. The contemporary carbon cycle. In D.H. Holland and K.K. Turekian (Eds.), Treatise on Geochemistry, Pergamon, New York, pp. 473–513.
  • Huang, Y., and Yang, V. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci., 35(4), 91–134.
  • Klimenko, A.Y. 1990. Multi-component diffusion of various admixtures in turbulent flow. Fluid Dyn., 25, 327–334.
  • Klimenko, A.Y., and Bilger, R.W. 1999. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci., 25, 595–687.
  • Kolla, H., and Swaminathan, N. 2010. Strained flamelets for turbulent premixed flames I: Formulation and planar flame results. Combust. Flame, 157, 943–954.
  • Lane, C.N. 2003. Acid Rain: Overview and Abstracts, Nova Science Publisher, Inc., New York, NY.
  • Launder, B.E., Reece, G.J., and Rodi, W. 1975. Progress in the development of a Reynolds-stress turbulent closure. J. Fluid Mech., 68, 537–566.
  • Lieuwen, T., Neumeier, Y., and Zinn, B.T. 1998. The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors. Combust. Sci. Technol., 135(1), 193–211.
  • Lindstedt, R.P., and Vaos, E.M. 2006. Transported PDF modeling of high-Reynolds number premixed turbulent flames. Combust. Flame, 145, 495–511.
  • Maslin, M. 2007. Global Warming: Causes, Effects and the Future, LLC and Voyageur Press, Minneapolis, MN.
  • Mura, A., Galzin, F., and Borghi, R. 2003. A unified PDF-flamelet modeling of high-Reynolds number premixed turbulent flames. Combust. Flame, 145, 495–511.
  • Novosselov, I.V., and Malte, P.C. 2008. Development and application of an eight-step global mechanism for CFD and CRN simulations of lean-premixed combustors. J. Eng. Gas Turbines Power, 130(2), 021503.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Pope, S.P. 1978. An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J., 16(3), 279–281.
  • Pope, S.B. 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Inst., 11(2), 119–192.
  • Prasad, R.O.P., and Gore, J.P. 1999. An evaluation of flame surface density models for turbulent premixed jet flames. Combust. Flame, 16, 1–14.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Lissianski, V.V., and Qin, Z. 2002. GRI-Mech3.0. Available at http://www.me.berkeley.edu/gri_mech/
  • Spalding, D.B. 1970. Mixing and chemical reaction in steady confined turbulent flame. Proc. Combust. Inst., 13, 649–657.
  • Swaminathan, N., and Bray, K.N.C. 2011. Turbulent Premixed Flames, Cambridge Press, Cambridge, UK.
  • Tennekes, H., and Lumley, J.L. 1972. A First Course in Turbulence, The Massachusetts Institute of Technology, Boston, MA.
  • Veynante, D., and Vervisch, L. 2002. Turbulent Combustion Modelling. Prog. Energy Combust. Sci., 28(3), 193–288.
  • Wang, G., Boileau, M., and Veynante, D. 2011. Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame, 158(11), 2199–2213.
  • Williams, F.A. 1985. Turbulent combustion. In J.D. Buckmaster (Ed.), The Mathematics of Combustion, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.