397
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effect of Oxycombustion Diluents on the Extinction of Nonpremixed Methane Opposed-Jet Flames

&
Pages 370-388 | Received 14 Mar 2014, Accepted 10 Nov 2015, Published online: 19 Jan 2016

References

  • Amato, A., Hudak, R., D’Carlo, P., Noble, D., Scarborough, D., Seitzman, J., and Lieuwen, T. 2011. Methane oxy-combustion for low CO2 cycles: Blowoff measurements and analysis. J. Eng. Gas Turbines Power, 133(6), 061503.
  • Amato, A., Seitzman, J.M., and Lieuwen, T.C. 2013. Emissions from oxyfueled or high exhaust gas recirculation turbines. In T.C. Lieuwen and V. Yang (Eds.), Gas Turbine Emissions, Cambridge University Press, New York.
  • Anderlohr, J.M., da Cruz, A.P., Bounaceur, R., and Battin-Leclerc, F. 2010. Thermal and kinetic impact of CO, CO2, and H2O on the postoxidation of IC-engine exhaust gases. Combust. Sci. Technol., 182, 39.
  • Bevington, P.R., and Robinson, D.K. 2002. Data Reduction and Error Analysis for the Physical Sciences, 3rd ed., McGraw-Hill, New York, NY, chap. 3.
  • Buhre, B.J.P., Elliott, L.K., Sheng, C.D., Gupta, R.P., and Wall, T.H. 2005. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci., 31, 283.
  • Chelliah, H.K., Law, C.K., Ueda, T., Smoke, M.D., and Williams, F.A. 1990. An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames. Proc. Combust. Inst., 23, 503.
  • CHEMKIN. 2010. CHEMKIN-PRO 15101. Reaction Design, San Diego, CA.
  • Chen, L., Yong, S.Z., and Ghoniem, A.F. 2012. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust. Sci., 38, 156.
  • Chen, R., and Axelbaum, R.L. 2005. Scalar dissipation rate at extinction and the effects of oxygen-enriched combustion. Combust. Flame, 142, 62.
  • Das, A.K., Kumar, K., and Sung, C.-J. 2011. Laminar flame speeds of moist syngas mixtures. Combust. Flame, 158, 345.
  • Dattarajan, S., Park, O., Fisher, E.M., Gouldin, G.C., and Bozzelli, J.W. 2010. Subatmospheric extinction of opposed jet diffusion flames of jet fuel and its surrogates. AIAA J., 48, 158.
  • Davis, J., and Herzog, H. 2000. The cost of carbon capture. Presented at the MIT Sequestration Forum, Cambridge, MA, October 31–November 1.
  • de Persis, S., Foucher, F., Pillier, L., Osorio, V., and Gökalp, I. 2013. Effects of O2 enrichment and CO2 dilution on laminar methane flames. Energy, 55, 1055.
  • Du, J., and Axelbaum, R.L. 1996. The effects of flame structure on extinction of CH4-O2-N2 diffusion flames. Proc. Combust. Inst., 26, 1137.
  • Glarborg, P., and Bentzen, L.L.B. 2008. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels, 22, 291.
  • Guo, H., Ju, Y., Maruta, K., Niioka, T., and Liu, F. 1998. Numerical investigation of CH4/CO2/air and CH4/CO2/O2 counterflow premixed flames with radiation reabsorption. Combust. Sci. Technol., 135, 49.
  • Kee, R.J., Miller, J.A., Evans, G.H., and Dixon-Lewis, G. 1988. A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. Proc. Combust. Inst., 22, 1479.
  • Law, C.K. 1987. Mathematical modelling in combustion science. In J.D. Buckmaster and T. Takeno (Ed.), Extinction of Counterflow Diffusion Flames with Branching-Termination Chain Mechanisms: Theory and Experiment, Springer-Verlag, New York, NY, pp. 147–156.
  • Liu, F., Guo, H., Smallwood, G.J., and Gülder, Ö. 2001. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation. Combust. Flame, 125, 778.
  • Liu, H., Zailani, R., and Gibbs, B.M. 2005. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel, 84, 833.
  • Maruta, K., Abe, K., Hasegawa, S., Maruyama, S., and Sato, J. 2007. Extinction characteristics of CH4/CO2 versus O2/CO2 counterflow non-premixed flames at elevated pressures up to 0.7 MPa. Proc. Combust. Inst., 31, 1223.
  • Matynia, A., Delfau, J.-L., Pillier, L., and Vovelle, C. 2009. Comparative study of the influence of CO2 and H2O on the chemical structure of lean and rich methane–air flames at atmospheric pressure. Combust. Explos. Shock Waves, 45, 635.
  • Mazas, A.N., Fiorina, B., Lacoste, D.A., and Schuller, T. 2011. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combust. Flame, 158, 2428.
  • Mazas, A.N., Lacoste, D.A., and Schuller, T. 2010. Experimental and numerical investigation on the laminar flame speed of CH4/O2 mixtures diluted with CO2 and H2O. ASME Paper GT2010-22512. Proceedings of the ASME Turbo Expo 2010, Glasgow, UK, June 14–18.
  • Molina, A., and Shaddix, C.R. 2007. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc. Combust. Inst., 31, 1905.
  • Nishioka, M., Law, C.K., and Takeno, T. 1996. A flame controlling continuation method for generating S-curve responses with detailed chemistry. Combust. Flame, 104, 328.
  • Park, J., Kim, J.S., Chung, J.O., Yun, J.H., and Keel, S.I. 2009. Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames. Int. J. Hydrogen Energy, 34, 8756.
  • Pons, L., Darabiha, N., and Candel, S. 2008. Pressure effects on nonpremixed strained flames. Combust. Flame, 152, 218.
  • Santner, J., Dryer, F.L., and Ju, Y. 2013. The effects of water dilution on hydrogen, syngas, and ethylene flames at elevated pressure. Proc. Combust. Inst., 34, 719.
  • Sarnacki, B.G., Esposito, G., Krauss, R.H., and Chelliah, H.K. 2012. Extinction limits and associated uncertainties of nonpremixed counterflow flames of methane, ethylene, propylene and n-butane in air. Combust. Flame, 159, 1026.
  • Seiser, R., and Seshadri, K. 2005. The influence of water on extinction and ignition of hydrogen and methane flames. Proc. Combust. Inst., 30, 407.
  • Seshadri, K., and Trevino, C. 1989. The influence of the Lewis numbers of the reactants on the asymptotic structure of counterflow and stagnant diffusion flames. Combust Sci. Technol., 64, 243.
  • Seshadri, K., and Williams, F.A. 1978. Laminar flow between parallel plates with injection of a reactant at high Reynolds number. Int. J. Heat Mass Transfer, 21, 251.
  • Shaddix, C.R., and Molina, A. 2009. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc. Combust. Inst., 32, 2091.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, Jr., W.C. Lissianski, V.V., and Qin, Z. 1999. GRI-Mech. Available at: http://www.me.berkeley.edu/gri_mech/.
  • Sohn, C.H., Jeong, I.M., and Chung, S.H. 2002. Numerical study of the effects of pressure and air-dilution on NO formation in laminar counterflow diffusion flames of methane in high temperature air. Combust. Flame, 130, 83.
  • Suda, T., Masuko, K., Sato, J., Yamamoto, A., and Okazaki, K. 2007. Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion. Fuel, 86, 2008.
  • Tan, Y., Croiset, E., Douglas, M.A., and Thambimuthu, K.V. 2006. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel, 85, 507.
  • Van Blarigan, A.C., Seiser, R., Chen, J.Y., Cattolica, R., and Dibble, R.W. 2013. Working fluid composition effects on methane oxycombustion in an SI-engine: EGR vs CO2. Proc. Combust. Inst., 34(2), 2951.
  • Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F.N., and Law, C.K. 2007. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. Available at: http://ignis.usc.edu/USC_Mech_II.htm.
  • Williams, T.C., Shaddix, C.R., and Schefer, R.W. 2008. Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combust. Sci. Technol., 180, 64.
  • Zegers, E.J.P., Williams, B.A., Fisher, E.M., Fleming, J.W., and Sheinson, R.S. 2000. Suppression of nonpremixed flames by fluorinated ethanes and propanes. Combust. Flame, 121, 471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.