754
Views
19
CrossRef citations to date
0
Altmetric
Articles

Ignition by Short Duration, Nonequilibrium Plasma: Basic Concepts and Applications in Internal Combustion Engines

, &
Pages 831-852 | Received 28 Jun 2015, Accepted 10 Nov 2015, Published online: 09 May 2016

References

  • Adamovich, I.V., Lempert, W.R., Nishihara, M., Rich, J.W., and Utkin, Y.G. 2008. Repetitively pulsed nonequilibrium plasmas for magnetohydrodynamic flow control and plasma-assisted combustion. J. Propul. Power, 24, 1198.
  • Adams, S.F., Miles, J.A., and Laber, A.C. 2010. Resonant laser induced breakdown for fuel-air ignition. Paper AIAA-2010-646. Presented at the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, January 4–7.
  • Aleksandrov, K.V., Bychkov, V.L., Esakov, I.I., Grachev, L.P., Khodataev, K.V., Ravaev, A.A., and Matveev, I.B. 2009. Investigations of subcritical streamer microwave discharge in reverse-vortex combustion chamber. IEEE Trans. Plasma Sci., 37, 2293.
  • Aleksandrov, N., Kindysheva, S., Nudnova, M., and Starikovskiy, A. 2010. Mechanism of ultra-fast heating in a nonequilibrium weakly-ionized air discharge plasma in high electric fields. J. Phys. D: Appl. Phys., 43, 255201.
  • Anikin, N.B., Mintoussov, E.I., Pancheshnyi, S.V., Roupassov, D.V., Sych, V.E., and Starikovskii, A.Yu. 2003. Nonequilibrium plasmas and its applications for combustion and hypersonic flow control. Paper AIAA-2003-1053. Presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, January, Reno, Nevada, January 6–9.
  • Bychkov, D.V., Grachev, L.P., and Esakov, I.I. 2011. Role of ionization-overheating instability in formation of volumetric structure of microwave streamer discharge. Paper AIAA-2011-1147. Presented at the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, January 4–7.
  • Cathey, C.D., Tao, T., Shiraishi, T., Urushihara, T., Kuthi, A., and Gundersen, M.A. 2007. Nanosecond plasma ignition for improved performance of an internal combustion engine. IEEE Trans. Plasma Sci., 35, 1664.
  • Cheng, H., Page, V., Kuang, Z., Lyon, E., Dearden, G., and Shenton, T. 2015. Multiple pulse laser ignition control application in GDI lean combustion. Paper W2A.2. Presented at the Laser Ignition Conference, Argonne, Illinois, April 27–30.
  • Chintala, N., Bao, A., Lou, G., and Adamovich, I.V. 2006. Measurements of combustion efficiency in nonequilibrium RF plasma-ignited flows. Combust. Flame, 144, 744.
  • Dearden, G., and Shenton, T. 2013. Laser ignited engines: progress, challenges and prospects. Opt. Express, 21, A1113.
  • Dogariu, A., Michael, J., Stockman, E., and Miles, R. 2009. Atomic oxygen detection using radar REMPI. Presented at the Conference on Lasers and Electro‐Optics (CLEO)/The International Quantum Electronics Conference (IQEC), Baltimore, MD, June 2–4.
  • Dumitrache, C., Boissiere, A., Baumgardner, M.E., Marchese, A.J., and Yalin, A.P. 2015. Laser ignition of methane-air mixtures: An investigation of the lean limit and minimum ignition energy. Paper W3A.4. Presented at the Laser Ignition Conference, Argonne, IL, April 27–30.
  • El-Rabii, H., Zahringer, K., Rolon, J.C., and Lacas, F. 2004. Laser ignition in a lean premixed prevaporized injector. Combust. Sci. Technol., 176, 1391.
  • Esakov, I.I., Grachev, L.P., Khodataev, K.V., and Van Wie, D.M. 2001. Investigation of the under-critical microwave streamer discharge for jet engine fuel ignition. Paper AIAA-2001-2939. 32nd AIAA Plasmadynamics and Lasers Conference and 4th Weakly Ionized Gases Workshop, Anaheim, CA, June 11–14.
  • Gajdeczko, B.F., Angioletti, M., and Dryer, F.L. 2004. Laser ignition of liquid oxygen/ethanol propellants. Presented at the 30th International Symposium on Combustion, Chicago, IL, July 25–30.
  • Ikeda, Y., Nishiyama, A., and Kaneko, M. 2009a. Microwave enhanced ignition process for fuel mixture at elevated pressure of 1 MPa. Paper AIAA-2009-223. Presented at the Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, January 5–8.
  • Ikeda, Y., Nishiyama, A., Katano, H., Kaneko, M., and Jeong, H. 2009b. Research and development of microwave plasma combustion engine. Part II: Engine performance of plasma combustion engine. SAE Technical Paper 2009-01-1049. DOI: 10.4271/2009-01-1049.
  • Jaggers, H.C., and von Engel, A. 1971. The effect of electric fields on the burning velocities of various flames. Combust. Flame, 16, 275.
  • Keldysh, L.V. 1965. Ionization in the field of a strong electromagnetic wave. JETP, 20, 1307.
  • Khodataev, K.V. 2008. Microwave discharges and possible applications in aerospace technologies. J. Propuls. Power, 24, 962.
  • Kim, W., Do, H., Mungal, M.G., and Capelli, M.A. 2006. Plasma discharge stabilization of jet diffusion flames. IEEE Trans. Plasma Sci., 34, 2545.
  • Klimov, A., Bittiurin, V., Moralev, I., Tolkunov, B., Nikitin, A., Velichko, A., and Bilera, I. 2006. Non-premixed plasma-assisted combustion of hydrocarbon fuel in high-speed airflow. Paper AIAA-2006-617. Presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, 9-12 Jan., Reno, NV, January 9–12.
  • Kofler, H., Tauer, J., Tartar, G., Iskra, K., Klausner, J., Herdin, G., and Wintner, E. 2007. An innovative solid state laser for engine ignition. Laser Phys. Lett., 4, 322.
  • Kopecek, H., Charareh, S., Lackner, M., Forsich, C., Winter, F., Klausner, J., Herdin, G., Weinrotter, M., and Wintner, E. 2005. Laser ignition of methane-air mixtures at high pressures and diagnostics. J. Eng. Gas Turbines Power, 127, 213.
  • Kroupa, G., Franz, G., and Winkelhofer, E. 2009. Novel miniaturized high-energy nd-YAG laser for spark ignition in internal combustion engines. Opt. Eng., 48, 014202.
  • Lavid, M., Nachshon, Y., Gulati, S.K., and Stevens. J.G. 1994. Photochemical ignition of premixed hydrogen/oxygen mixtures with ArF laser. Combust. Sci. Technol., 96, 231.
  • Leonov, S., Yarantsev, D., Napartovich, A., and Kochetov, I. 2006. Plasma assisted ignition and flameholding in high-speed flow. Paper AIAA-2006-563. Presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 9–12.
  • Lewis, B., and von Elbe, G. 1987. Combustion, Flames and Explosions of Gases, 3rd ed., Academic Press Inc., New York, 739 pp.
  • Liou, L.C. 1994. Laser ignition in liquid rocket engine. Paper AIAA-94-2980. Presented at the 30th Joint Propulsion Conference and Exhibit, Indianapolis, IN, June 27–29.
  • Liu, J., Wang, F., Li, G., Kuthi, A., Gutmark, E.J., Ronney, P.D., and Gundersen, M.A. 2005. Transient plasma ignition. IEEE Trans. Plasma Sci., 33, 326.
  • McMillian, M.H., Woodruff, S.D., Ontko, J.S., Richardson, S.W., and McIntyre, D.L. 2002. Laser spark ignition for natural gas fueled reciprocating engines. Presented at the Natural Gas Technologies Conference and Exposition, Orlando, FL, September 29–October 2.
  • Messina, D., Attal-Tretout, B., and Grisch, F. 2007. Study of a nonequilibrium nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering. Proc. Combust. Inst., 31, 825.
  • Michael, J.B., Chng, T.L., and Miles, R.B. 2013. Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition. Combust. Flame, 160, 796.
  • Michael, J.B., Dogariu, A., Shneider, M.N., and Miles, R.B. 2010. Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures. J. Appl. Phys., 108, 093308.
  • Miles, R.B., Michael, J.B., Limbach, C.M., McGuire, S.D., Chng, T.L., Edwards, M.R., DeLuca, N.J., Shneider, M.N., and Dorariu, A. 2015. New diagnostic methods for laser plasma- and microwave–enhanced combustion. Philos. Trans. R. Soc. London, Ser. A, 373, 20140338.
  • Nikipelov, A.A., Popov, I.B., Correale, G., Rakitin, A.E., and Starikovskii, A.Yu. 2010. Ultra-lean and ultra-rich flames stabilization by high-voltage nanosecond pulsed discharge. Paper AIAA-2010-1341. Presented at the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4-7 Jan., Orlando, FL, January 4–7.
  • Nikipelov, A.A., Rakitin, A.E., Popov, I.B., Correale, G., and Starikovskii, A.Yu. 2011. Plasmatrons powered by pulsed high-voltage nanosecond pulsed discharge for ultra-lean flame stabilization. Paper AIAA-2011-1214. Presented at the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, January 4–7.
  • Pancheshnyi, S., Nikipelov, A., Anokhin, E., and Starikovskii, A.Yu. 2014. Distributed spark ignition system powered by repetitive pulse nanosecond discharge. Paper AIAA-2014-1182. Presented at the 52nd American Institute of Aeronautics and Astronautics (AIAA) SciTech Conference, National Harbor, MD, January 13–17.
  • Phuoc, T.X., and White, F.P. 1999. Laser-induced spark ignition of CH4-air mixture. Combust. Flame, 119, 203.
  • Phuoc, T.X., and White, F.P. 2002. An optical and spectroscopic study of laser-induced sparks to determine available ignition energy. Proc. Combust. Inst., 23, 1621.
  • Pilla, G., Galley, D., Lacoste, D., Lacas, F., Veynante, D., and Laux, C.O. 2006. Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma, IEEE Trans. Plasma Sci., 34, 2471.
  • Pilla, G., Lacoste, D., Veynante, D., and Laux, C.O. 2008. Stabilization of a propane-air swirled flame using a nanosecond repetitively pulsed plasma. IEEE Trans. Plasma Sci., 36, 940.
  • Popov, V.S. 2004. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Phys. Usp., 47, 855.
  • Puchkarev, V., and Gundersen, M. 1997. Energy efficient plasma processing of gaseous emission using a short pulse discharge. Appl. Phys. Lett., 71, 3364.
  • Raizer, Yu.P. 1991. Gas Discharge Physics, Springer-Verlag, Berlin.
  • Rao, X., Hammack, S., Carter, C., Grotjohn, T., Asmussen, J., and Lee, T. 2011b. Microwave-plasma coupled re-ignition of methane and oxygen mixture under auto-ignition temperature. IEEE Trans. Plasma Sci., 2011, 3307.
  • Rao, X., Hemavan, K., Wichman, I., Carter, C., Grotjohn, T., Asmussen, J., and Lee, T. 2011a. Combustion dynamics for energetically enhanced flames using direct microwave energy coupling. Proc. Combust. Inst., 33, 3233.
  • Rapp, V.H., DeFilippo, A., Saxena, S., Chen, J., Dibble, R.W., Nishiyama, A., Moon, A., and Ikeda, Y. 2012. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug. J. Combust., Article ID 927081, DOI: 10.1155/2012/927081.
  • Ronney, P. 1994. Laser versus convectional ignition of flames. Opt. Eng., 33, 510.
  • Serbin, S., Mostipanenko, A., Matveev, I., and Tropina, A. 2011. Improvement of gas turbine plasma assisted combustor characteristics. Paper AIAA-2011-61. Presented at the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, xJanuary 4–7.
  • Shibkov, V.M., Aleksandrov, A.F., Chernikov, V.A., Ershov, A.P., Konstantinovskiy, R.S., and Zlobin, V.V. 2006. Combined MW–DC discharge in a high-speed propane-butane-air stream. Paper AIAA-2006-1216. Presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 9–12.
  • Shibkov, V.M., Aleksandrov, A.A., Chernikov, V.A., Ershov, A.P., and Shibkova, L.V. 2009. Microwave and direct-current discharges in high-speed flow: Fundamentals and applications to ignition. J. Propuls. Power, 25, 123.
  • Shiraishi, T., Urushihara, T., and Gundersen, M. 2009. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition. J. Phys. D: Appl. Phys., 42, 135208.
  • Shneider, M.N., Zheltikov, A.M., and Miles, R.B. 2011. Tailoring the air plasma with a double laser pulse. Phys. Plasmas, 18, 063509.
  • Singleton, D.R., and Gundersen, M.A. 2011a.Transient plasma fuel-air ignition. IEEE Trans. Plasma Sci., 39, 2214.
  • Singleton, D., Pendleton, S.J., and Gundersen, M.A. 2011b. The role of non-thermal transient plasma for enhanced flame ignition in C2H4-air. J. Phys. D: Appl. Phys., 44, 022001.
  • Srivastava, D.K., Wintner, E., and Agarwal, A.K. 2014. Effect of laser pulse on the laser ignition of compressed natural gas fueled engine. Opt. Eng., 53, 056120.
  • Stancu, G.D., Kaddouri, F., Lacoste, D.A., and Laux, C.O. 2010. Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. J. Phys. D: Appl. Phys., 43, 124002.
  • Starikovskaia, S.M. 2006. Plasma assisted ignition and combustion. J. Phys. D: Appl. Phys., 39, R265.
  • Starikovskiy, A. 2015. Physics and chemistry of plasma-assisted combustion. Philos. Trans. R. Soc. London, Ser. A, 373, 20150074.
  • Starikovskiy, A., Rakitin, A., Correale, G., Nikipelov, A., Urushihara, T., and Shiraishi, T. 2012. Ignition of hydrocarbon-air mixtures with non-equilibrium plasma at elevated pressures. Paper AIAA-2012-0828. Presented at the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, January 9–12.
  • Stockman, E., Zaidi, S., Miles, R., Carter, C., and Ryan, M. 2009. Measurements of combustion properties in a microwave enhanced flame. Combust. Flame, 156, 1453.
  • Taira, T. 2011. Domain-controlled laser ceramics toward giant micro-photonics. Opt. Mater. Exp., 1, 1040.
  • Tropina, A.A., Kuzmenko, A.P., Marasov, S.V., and Vilchinsky, D.V. 2014. Ignition system based on the nanosecond pulsed discharge. IEEE Trans. Plasma Sci., 42, 3881.
  • Tropina, A.A., Lenarduzzi, L., Marasov, S.V., and Kuzmneko, A.P. 2009. Comparative analysis of engine ignition systems. IEEE Trans. Plasma Sci., 37, 2286.
  • Tropina, A.A., Shneider, M., and Miles, R. 2013. Dynamics of a laser-induced filament supported and controlled by a direct current discharge. Paper AIAA-2013-0921. Presented at the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, January 7–10.
  • Tropina, A.A., Uddi, M., and Ju, Y. 2011. Non-equilibrium plasma influence on the minimum ignition energy. Part 1: Discharge model. IEEE Trans. Plasma Sci., 39, 615.
  • Uddi, M., Jiang, N., Adamovich, I.V., and Lempert, W.R. 2009. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence. J. Phys.: Appl. Phys., 42, 075205.
  • Uddi, M., Jiang, N., Mintousov, E., Adamovich, I.V., and Lempert, W.R. 2008. Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence. Paper AIAA-2008-1110. Presented at the 46th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 7–10.
  • Vinogradov, V.A., Alexandrov, A.F., Timofeev, I.B., and Esakov, I.I. 2004. The effects of plasma formations on ignition and combustion. 2004. Paper AIAA-2004-1356. Presented at the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 5–8.
  • Weinrotter, M., Kopecek, H., and Wintner, E. 2005. Laser ignition in engines. Laser Phys., 15, 947.
  • Wolk, B., DeFilippo, A., Chen, J.Y., Dibble, R., Nishiyama, A., and Ikeda, Y. 2013. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber. Combust. Flame, 160, 1225.
  • Yalin, A.P. 2013. High power fiber delivery for laser ignition applications. Opt. Express, 21, A1102.
  • Zaidi, S.H., Stockman, E., Qin, X., Zhao, Z., Macheret, S., Ju, Y., Miles, R.B., Sullivan, D.J., and Kline, J.F. 2006. Measurements of hydrocarbon flame speed enhancement in high-Q microwave cavity. Paper AIAA-2006-1217. Presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 9–12.
  • Zhang, Z., Shneider, M.N., and Miles, R.B. 2006. Microwave diagnostics of laser-induced avalanche ionization in air. J. Appl. Phys., 100, 074912.
  • Zhang, Z., Shneider, M.N., Zaidi, S.H., and Miles, R.B. 2007. Experiments on microwave scattering of REMPI in argon, xenon and nitric oxide. Paper AIAA 2007-4375. Presented at the 38th AIAA Plasmadynamics and Laser Conference, Miami, FL, June 25–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.