427
Views
5
CrossRef citations to date
0
Altmetric
Articles

Modeling the Response of Turbulent Flames to Harmonic Forcing

, , &
Pages 187-212 | Received 30 Jul 2015, Accepted 13 Jun 2016, Published online: 22 Jun 2016

References

  • Acharya, V., Emerson, B., Mondragon, U., Shin, D.-H., Brown, C., Mcdonell, V., and Lieuwen, T. 2013. Velocity and flame wrinkling characteristics of a transversely forced, bluff-body stabilized flame, Part II: Flame response modeling and comparison with measurements. Combust. Sci. Technol., 185, 1077–1097.
  • Acharya, V., Malanoski, M., Aguilar, M., and Lieuwen, T. 2014. Dynamics of a transversely excited swirling, lifted flame: Flame response modeling and comparison with experiments. J. Eng. Gas Turbines Power, 136, 051503(1)–051503( 10).
  • Barkley, D. 2006. Linear analysis of the cylinder wake mean flow. Europhys. Lett., 75, 750–756.
  • Boyer, L., and Quinard, J. 1990. On the dynamics of anchored flames. Combust. Flame, 82, 51–65.
  • Candel, S. 2002. Combustion dynamics and control: Progress and challenges. Proc. Combust. Inst., 29, 1–28.
  • Creta, F., Fogla, N., and Matalon, M. 2011. Turbulent propagation of premixed flames in the presence of Darrieus-Landau instability. Combust. Theor. Model., 15, 267–298.
  • Cuquel, A., Durox, D., and Schuller, T. 2013. Impact of flame base dynamics on the non-linear frequency response of conical flames. C.R. Méc., 341, 171–180.
  • Ducruix, S., Durox, D., and Candel, S. 2000. Theoretical and experimental determination of the transfer function of a laminar premixed flame. Proc. Combust. Inst., 28, 765–773.
  • Ducruix, S., Schuller, T., Durox, D., and Candel, S. 2003. Combustion dynamics and instabilities: Elementary coupling and driving mechanisms. J. Propul. Power, 19, 722–734.
  • Dupont, T. F., and Liu, Y. 2007. Back and forth error compensation and correction methods for semi-Lagrangian schemes with application to level set interface computations. Math. Comput., 76, 647–668.
  • Fleifil, M., Annaswamy, A.M., Ghoneim, Z.A., and Ghoneim, A.F. 1996. Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results. Combust. Flame, 106, 487–510.
  • Hemchandra, S., Peters, N., and Lieuwen, T. 2011. Heat release response of acoustically forced turbulent premixed flames—Role of kinematic restoration. Proc. Combust. Inst., 33, 1609–1617.
  • Hemchandra, S., Preetham, and Lieuwen, T.C. 2007. Response of turbulent premixed flames to harmonic acoustic forcing. Proc. Combust. Inst., 31, 1427–1434.
  • Hinze, J. 1975. Turbulence, McGraw-Hill, New York.
  • Humphrey, L., Acharya, V., Shin, D.H., and Lieuwen, T. 2014. Technical note: Coordinate systems and integration limits for global flame transfer function calculations. Int. J. Spray Combust. Dyn., 6, 411–416.
  • Jiang, G.-S., and Peng, D. 2000. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput., 21, 2126–2143.
  • Jones, B., Lee, J.G., Quay, B.D., and Santavicca, D.A. 2011. Flame response mechanisms due to velocity perturbations in a lean premixed gas turbine combustor. J. Eng. Gas Turbines Power, 133, 021503.
  • Kanthasamy, C., Raghavan, V., and Srinivasan, K. 2012. Effect of low frequency burner vibrations on the characteristics of premixed flames. Int. J. Spray Combust. Dyn., 4, 239–254.
  • Kashinath, K., Hemchandra, S., and Juniper, M.P. 2013. Nonlinear thermoacoustics of ducted premixed flames: The influence of perturbation convection speed. Combust. Flame, 160, 2856–2865.
  • Kerstein, A.R., Ashurst, W.T., and Williams, F.A. 1988. Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A, 37, 2728.
  • Kornilov, V.N., Schreel, K.R.A.M., and De Goey, L.P.H. 2007. Experimental assessment of the acoustic response of laminar premixed bunsen flames. Proc. Combust. Inst., 31, 1239–1246.
  • Lee, D.H., and Lieuwen, T.C. 2003. Premixed flame kinematics in a longitudinal acoustic field. J. Propul. Power, 19, 837–846.
  • Lieuwen, T.C., and Yang, V. (Eds.). 2005. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, American Institute of Aeronautics and Astronautics, Reston, VA.
  • Lipatnikov, A.N., and Sathiah, P. 2005. Effects of turbulent flame development on thermoacoustic oscillations. Combust. Flame, 142, 130–139.
  • Matalon, M., and Matkowsky, B.J. 1982. Flames as gasdynamic discontinuities. J. Fluid Mech., 124, 239–259.
  • Meliga, P., Pujals, G., and Serre, É. 2012. Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability. Phys. Fluids, 24.
  • Mettot, C., Sipp, D., and Bézard, H. 2014. Quasi-laminar stability and sensitivity analyses for turbulent flows: Prediction of low-frequency unsteadiness and passive control. Phys. Fluids, 26.
  • Peters, N., Wenzel, H., and Williams, F.A. 2000. Modification of the turbulent burning velocity by gas expansion. Proc. Combust. Inst., 28, 235–243.
  • Petersen, R.E., and Emmons, H.W. 1961. Stability of laminar flames. Phys. Fluids, 4, 456–464.
  • Pope, S. 2000. Turbulent Flows, Cambridge University Press, New York.
  • Preetham, T., Santosh, H., and Lieuwen, T. 2008. Dynamics of laminar premixed flames forced by harmonic velocity disturbances. J. Propul. Power, 24, 1390–1402.
  • Preetham, T., Thumuluru, S.K., Santosh, H., and Lieuwen, T. 2010. Linear response of laminar premixed flames to flow oscillations: Unsteady stretch effects. J. Propul. Power, 26, 524–532.
  • Schuller, T., Ducruix, S., Durox, D., and Candel, S. 2002. Modeling tools for the prediction of premixed flame transfer functions. Proc. Combust. Inst., 29, 107–113.
  • Schuller, T., Durox, D., and Candel, S. 2003. A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and v-flame dynamics. Combust. Flame, 134, 21–34.
  • Shanbhogue, S., Shin, D.-H., Hemchandra, S., Plaks, D., and Lieuwen, T. 2009. Flame-sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst., 32, 1787–1794.
  • Shin, D.-H., and Lieuwen, T. 2012. Flame wrinkle destruction processes in harmonically forced, laminar premixed flames. Combust. Flame, 159, 3312–3322.
  • Shin, D.H., and Lieuwen, T.C. 2013. Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames. J. Fluid Mech., 721, 484–513.
  • Shin, D.H., Lieuwen, T.C., and Shanbhogue, S. 2008. Premixed flame kinematics in an axially decaying, harmonically oscillating vorticity field. Presented at the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, July 21–23.
  • Wang, H.Y., Law, C.K., and Lieuwen, T. 2009. Linear response of stretch-affected premixed flames to flow oscillations. Combust. Flame, 156, 889–895.
  • Williams, F.A. 1985. Turbulent combustion. In J.D. Buckmaster (Ed.), The Mathematics of Combustion, Society for Industrial and Applied Mathematics, Philadelphia, PA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.