128
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of Impurities Argon and Moisture Additives on Laser Ignition of n-Decane/Air Mixtures

, &
Pages 1741-1759 | Received 30 Oct 2015, Accepted 07 Apr 2016, Published online: 28 Oct 2016

References

  • Bane, S.P.M., Shepherd, J.E., Kwon, E., and Day, A.C. 2011. Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures. Int. J. Hydrogen Energy, 36(3), 2344–2350. DOI: 10.1016/j.ijhydene.2010.05.082.
  • Beduneau, J. 2003. Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark. Combust. Flame, 132(4), 653–665. DOI: 10.1016/S0010-2180(02)00536-9.
  • Bernard, S., Lebecki, K., Gillard, P., Youinou, L., and Baudry, G. 2010. Statistical method for the determination of the ignition energy of dust cloud-experimental validation. J. Loss Prev. Process Ind., 23(3), 404–411. DOI: 10.1016/j.jlp.2010.01.006.
  • Boretti, A. 2013. Water injection in directly injected turbocharged spark ignition engines. Appl. Therm. Eng., 52(1), 62–68. DOI: 10.1016/j.applthermaleng.2012.11.016.
  • Cardin, C., Renou, B., Cabot, G., and Boukhalfa, A. 2013a. Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames. C.R. Méc., 341(1–2), 191–200. DOI: 10.1016/j.crme.2012.10.019.
  • Cardin, C., Renou, B., Cabot, G., and Boukhalfa, A.M. 2013b. Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames: New insight into ignition transition. Combust. Flame, 160(8), 1414–1427. DOI: 10.1016/j.combustflame.2013.02.026.
  • Catoire, L., and Naudet, V. 2005. Estimation of temperature-dependent lower flammability limit of pure organic compounds in air at atmospheric pressure. Process Saf. Prog., 24(2), 130–137. DOI: 10.1002/prs.10072.
  • Chehroudi, B. 2004. Laser ignition for combustion engines. Presented at the Advanced Laser Applications Conference and Exposition, Ann Arbor, MI, September 20–22.
  • Eckhoff, R.K., Ngo, M., and Olsen, W. 2010. On the minimum ignition energy (MIE) for propane/air. J. Hazard. Mater., 175(1–3), 293–297. DOI: 10.1016/j.jhazmat.2009.09.162.
  • Gillard, P., Mokrani, N., Rudz, S., Strozzi, C., and Tihay, V. 2014. Effect of moisture and argon on laser ignition of ethanol and decane. Presented at the X ISHPMIE Tenth International Symposium, Bergen, Norway, June 10–14.
  • Griffiths, J., Riley, M.J.W., Borman, A., Dowding, C., Kirk, A., and Bickerton, R. 2015. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures. Opt. Lasers Eng., 66, 132–137. DOI: 10.1016/j.optlaseng.2014.09.002.
  • Hatwar, P., and Verma, D. 2012. Laser ignition in internal combustion engines. Int. J. Modern Eng. Res., 2(2), 341–345.
  • He, Z., Jing, Q., Zhu, L., Zhang, W., and Huang, Z. 2015. The effects of different intake charge diluents on the combustion and emission characteristics of a spark ignition natural gas engine. Appl. Therm. Eng., 89, 958–967. DOI: 10.1016/j.applthermaleng.2015.06.072.
  • Jain, V., and Kozola, S. 2001. Measurements of minimum ignition energy by using laser sparks for hydrocarbon fuels in air : Propane, dodecane, and jet-A fuel. Combust. Flame, 125(4), 1320–1328.
  • Jiping, L., Keqiang, C., Xiaobo, Z., Jinshi, W., Junjie, Y., and Deguchi, Y. 2015. Numerical simulation on the laser induced oxygen spark under different ambient conditions. Energy Procedia, 75, 2409–2414. DOI: 10.1016/j.egypro.2015.07.194.
  • Jones, R.E. 1978. Gas turbine engine emissions—Problems, progress and future. Prog. Energy Combust. Sci., 4(2), 73–113. DOI: 10.1016/0360-1285(78)90006-0.
  • Karthikeya Sharma, T. 2015. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture. J. Adv. Res., 6, 819–826.
  • Li, W., Liu, Z., Wang, Z., and Dou, H. 2015. Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine. Energy Convers. Manage., 105, 1082–1095. DOI: 10.1016/j.enconman.2015.08.052.
  • Maxim Thys, E.D. 2011. Laser Beams: Theory, Properties & Applications, Nova Science Publishers, Hauppauge, NY.
  • McNeill, D.H. 2005. Minimum ignition energy for laser spark ignition. Proc. Combust. Inst., 30(2), 2913–2920. DOI: 10.1016/j.proci.2004.07.026.
  • Mokrani, N., Rudz, S., and Gillard, P. 2015. Influence de l’argon sur la durée de relaxation du plasma induit par claquage laser. CAE XII. Arc Électrique et Plasma Thermique, 1, 6.
  • Moorhouse, J., Williams, A., and Maddison, T.E. 1974. An investigation of the minimum ignition energies of some C1 to C7 hydrocarbons. Combust. Flame, 23(2), 203–213.
  • Morsy, M.H., and Chung, S.H. 2002. Numerical simulation of front lobe formation in laser-induced spark ignition of CH4/air mixtures. Proc. Combust. Inst., 29(2), 1613–1619.
  • Nikolaou, Z.M., Chen, J.Y., and Swaminathan, N. 2013. A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content. Combust. Flame, 160(1), 56–75. DOI: 10.1016/j.combustflame.2012.09.010.
  • Pakter, R. 1998. Intensity effects on inverse-Bremsstrahlung electron acceleration. Phys. Rev. E, 58(2), 2501–2504. DOI: 10.1103/PhysRevE.58.2501.
  • Phuoc, T.X. 2006. Laser-induced spark ignition fundamental and applications. Opt. Lasers Eng., 44(5), 351–397. DOI: 10.1016/j.optlaseng.2005.03.008.
  • Phuoc, T.X., and White, F.P. 1999. Laser-induced spark ignition of CH4/air mixtures. Combust. Flame, 119(3), 203–216.
  • Rudz, S., Chetehouna, K., Strozzi, C., and Gillard, P. 2014. Minimum ignition energy measurements for α-pinene/air mixtures. Combust. Sci. Technol., 186(10–11), 1597–1605. DOI: 10.1080/00102202.2014.935604.
  • Starikovskiy, A., and Aleksandrov, N. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci., 39(1), 61–110. DOI: 10.1016/j.pecs.2012.05.003.
  • Strozzi, C., Gillard, P., and Minard, J.-P. 2014. Laser-induced spark ignition of gaseous and quiescent n-decane–air mixtures. Combust. Sci. Technol., 186(10–11), 1562–1581. DOI: 10.1080/00102202.2014.935601.
  • Thiele, M., Selle, S., Riedel, U., Warnatz, J., and Maas, U. 2000. Numerical simulation of spark ignition including ionization. Proc. Combust. Inst., 28(1), 1177–1185. DOI: 10.1016/S0082-0784(00)80328-8.
  • Tihay, V., Gillard, P., and Blanc, D. 2012. Ignition study of acetone/air mixtures by using laser-induced spark. J. Hazard. Mater., 209–210, 372–378. DOI: 10.1016/j.jhazmat.2012.01.040.
  • Tsuji, H., Gupta, A.K., Hasegawa, T., Katsuki, M., Kishimoto, K., and Morita, M. 2003. High Temperature Air Combustion: From Energy Conservation to Pollution Reduction, CRC Press, Boca Raton, FL.
  • Wähner, A., Gramse, G., Langer, T., and Beyer, M. 2013. Determination of the minimum ignition energy on the basis of a statistical approach. J. Loss Prev. Process Ind., 26(6), 1655–1660. DOI: 10.1016/j.jlp.2013.06.002.
  • Zhang, B., Shen, X., and Pang, L. 2015. Effects of argon/nitrogen dilution on explosion and combustion characteristics of dimethyl ether–air mixtures. Fuel, 159, 646–652. DOI: 10.1016/j.fuel.2015.07.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.