762
Views
36
CrossRef citations to date
0
Altmetric
Articles

Comparison of Combustion Characteristics of Magnesium and Aluminum Powders

, , , , , , & show all
Pages 1857-1877 | Received 30 Oct 2015, Accepted 07 Apr 2016, Published online: 28 Oct 2016

References

  • Aslanov, S.K., Shevchuk, V.G., Kostyshin, Y.N., Boichuk, L.V., and Goroshin, S.V. 1993. Oscillatory combustion of air suspensions. Combust. Explos. Shock Waves, 29(2), 163–169.
  • Badiola, C., and Dreizin, E.L. 2012. On weak effect of particle size on its burn time for micron-sized aluminum powders. Combust. Sci. Technol., 184(12), 1993–2007.
  • Badiola, C., Gill, R.J., and Dreizin, E.L. 2011. Combustion characteristics of micron-sized aluminum particles in oxygenated environments. Combust. Flame, 158(10), 2064–2070.
  • Ballal, D.R. 1983. Flame propagation through dust clouds of carbon, coal, aluminium and magnesium in an environment of zero gravity. Proc. R. Soc. London, Ser. A, 385(1788), 21–51.
  • Baudry, G., Bernard, S., and Gillard, P. 2007. Influence of the oxide content on the ignition energies of aluminium powders. J. Loss Prev. Process Ind., 20(4–6), 330–336.
  • Bazyn, T., Krier, H., and Glumac, N. 2007. Evidence for the transition from the diffusion-limit in aluminum particle combustion. Proc. Combust. Inst., 31(2), 2021–2028.
  • Beckstead, M.W. 2005. Correlating aluminum burning times. Combust. Explos. Shock Waves, 41(5), 533–546.
  • Bergthorson, J., Goroshin, S., Soo, M., Julien, P., Palecka, J., Frost, D., and Jarvis, D. 2015. Direct combustion of recyclable metal fuels for zero-carbon heat and power. Appl. Energy, 160, 368–382.
  • Bocanegra, P., Davidenko, D., Sarou-Kanian, V., Chauveau, C., and Gökalp, I. 2010. Experimental and numerical studies on the burning of aluminum micro and nanoparticle clouds in air. Exp. Therm. Fluid Sci., 34(3), 299–307.
  • Boichuk, L.V., Shevchuk, V.G., and Shvets, A.I. 2002. Flame propagation in two-component aluminum–boron gas suspensions. Combust. Explos. Shock Waves, 38(6), 651–654.
  • Bojko, B.T., Des Jardin, P.E., and Washburn, E.B. 2014. On modeling the diffusion to kinetically controlled burning limits of micron-sized aluminum particles. Combust Flame, 161(12), 3211–3221.
  • Bradley, D., and Mitcheson, A. 1976. Mathematical solutions for explosions in spherical vessels. Combust. Flame, 26, 201–217.
  • British Standards Institution. 2006. Determination of the lower explosion limit (LEL) of dust clouds. In Determination of Explosion Characteristics of Dust Clouds, BS EN 14034-3.
  • Cassel, H., and Liebman, I. 1962. Combustion of magnesium particles I. Combust. Flame, 6, 153–156.
  • Cassel, H.M. 1964. Some fundamental aspects of dust flames. Report Inv. 6551. U.S. Department of the Interior, Bureau of Mines, Washington, DC.
  • Chen, Z., Burke, M.P., and Ju, Y. 2009. Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc. Combust. Inst., 32(1), 1253–1260.
  • Dahoe, A.E., Cant, R.S., and Scarlett, B. 2001. On the decay of turbulence in the 20-liter explosion sphere. Flow Turbul. Combust., 67(3), 159–184.
  • Daily, J.W., Dreyer, C., Abbud-Madrid, A., and Branch, M.C. 2002. Transition probabilities in the B1Σ+–X1Σ+ and the B1Σ+–A1Π electronic systems of MgO. J. Mol. Spectrosc., 214(2), 111–116.
  • Derevyaga, M.E., Stesik, L.N., and Fedorin, E.A. 1978. Magnesium combustion regimes. Combust. Explos. Shock Waves, 14(5), 559–564.
  • Di Sarli, V., Russo, P., Sanchirico, R., and Di Benedetto, A. 2014. CFD simulations of dust dispersion in the 20 L vessel: Effect of nominal dust concentration. J. Loss Prev. Process Ind., 27, 8–12.
  • Dreizin, E. 1996. Experimental study of stages in aluminium particle combustion in air. Combust. Flame, 105(4), 541–556.
  • Dreizin, E.L., Berman, C.H., and Vicenzi, E.P. 2000. Condensed-phase modifications in magnesium particle combustion in air. Combust. Flame, 122(1–2), 30–42.
  • Dreizin, E.L., and Hoffmann, V.K. 2000. Experiments on magnesium aerosol combustion in microgravity. Combust. Flame, 122(1–2), 20–29.
  • Dufaud, O., Traoré, M., Perrin, L., Chazelet, S., and Thomas, D. 2010. Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere. J. Loss Prev. Process Ind., 23(2), 226–236.
  • Gill, R.J., Badiola, C., and Dreizin, E.L. 2010. Combustion times and emission profiles of micron-sized aluminum particles burning in different environments. Combust. Flame, 157(11), 2015–2023.
  • Gillard, P., de Izarra, C., and Roux, M. 2002. Study of the radiation emitted during the combustion of pyrotechnic charges. Part II: Characterization by fast visualization and spectroscopic measurements. Propellants Explos. Pyrotech., 27(2), 80.
  • Gillard, P., and Roux, M. 2002. Study of the radiation emitted during the combustion of pyrotechnic charges. Part I: Non stationary measurement of the temperature by means of a two-color pyrometer. Propellants Explos. Pyrotech., 27(2), 72.
  • Glassman, I., and Yetter, R.A. 2008. Combustion, 4th Ed., Elsevier, Amsterdam.
  • Glorian, J., Gallier, S., and Catoire, L. 2016. On the role of heterogeneous reactions in aluminum combustion. Combust. Flame., 168, 378–392.
  • Glumac, N., Krier, H., Bazyn, T., and Eyer, R. 2005. Temperature measurements of aluminum particles burning in carbon dioxide. Combust. Sci. Technol., 177(3), 485–511.
  • Goroshin, S., Bidabadi, M., and Lee, J. 1996a. Quenching distance of laminar flame in aluminum dust clouds. Combust. Flame, 2180, 147–160.
  • Goroshin, S., Fomenko, I., and Lee, J. 1996b. Burning velocities in fuel-rich aluminum dust clouds. Symp. (Int.) Combust., 26(2), 1961–1967.
  • Goroshin, S., Higgins, A., and Lee, J. 1999. Powdered magnesium-carbon dioxide propulsion concepts for Mars missions. AIAA Paper 99–2408. Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Los Angeles, CA, June 20–24.
  • Goroshin, S., Mamen, J., Higgins, A., Bazyn, T., Glumac, N., and Krier, H. 2007. Emission spectroscopy of flame fronts in aluminum suspensions. Proc. Combust. Inst., 31(2), 2011–2019.
  • Julien, P., Vickery, J., Goroshin, S., Frost, D.L., and Bergthorson, J.M. 2015. Freely-propagating flames in aluminum dust clouds. Combust. Flame, 162(11), 4241–4253.
  • Kalejaiye, O., Amyotte, P.R., Pegg, M.J., and Cashdollar, K.L. 2010. Effectiveness of dust dispersion in the 20-L Siwek chamber. J. Loss Prev. Process Ind., 23(1), 46–59.
  • Legrand, B., Marion, M., Chauveau, C., Gökalp, I., and Shafirovich, E. 2001. Ignition and combustion of levitated magnesium and aluminum particles in carbon dioxide. Combust. Sci. Technol., 165(1), 151–174.
  • Legrand, B., Shafirovich, E., Marion, M., Chauveau, C., and Gökalp, I. 1998. Ignition and combustion of levitated magnesium particles in carbon dioxide. Symp. (Int.) Combust., 27(2), 2413–2419.
  • Lynch, P., Krier, H., and Glumac, N. 2009. A correlation for burn time of aluminum particles in the transition regime. Proc. Combust. Inst., 32(2), 1887–1893.
  • Markstein, G.H. 1963. Combustion of metals. AIAA J., 1(3), 550–562.
  • Mohan, S., Trunov, M.A., and Dreizin, E.L. 2009. On possibility of vapor-phase combustion for fine aluminum particles. Combust. Flame, 156(11), 2213–2216.
  • Prentice, J. 1974. Combustion of laser-ignited aluminum droplets in wet and dry oxidizers. Presented at the 12th AIAA Aerospace Sciences Meeting, Washington, DC, January 30–February 1.
  • Risha, G., Huang, Y., Yetter, R.A., and Yang, V. 2005. Experimental investigation of aluminum particle dust cloud combustion. AIAA Paper 2005-0739. Presented at the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10–13.
  • Santhanam, P.R., Hoffmann, V.K., Trunov, M.A., and Dreizin, E.L. 2010. Characteristics of aluminum combustion obtained from constant-volume explosion experiments. Combust. Sci. Technol., 182(7), 904–921.
  • Shafirovich, E.I., Shiriaev, A., and Goldshleger, U.I. 1993. Magnesium and carbon dioxide—A rocket propellant for Mars missions. J. Propul. Power, 9(2), 197–203.
  • Shkolnikov, E.I., Zhuk, A.Z., and Vlaskin, M.S. 2011. Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable Sustainable Energy Rev., 15(9), 4611–4623.
  • Shoshin, Y., and Dreizin, E.L. 2004. Laminar lifted flame speed measurements for aerosols of metals and mechanical alloys. AIAA J., 42(7), 1416–1426.
  • Shoshin, Y., and Dreizin, E. 2006. Particle combustion rates for mechanically alloyed Al-Ti and aluminum powders burning in air. Combust. Flame, 145(4), 714–722.
  • Shoshin, Y.L., Mudryy, R.S., and Dreizin, E.L. 2002. Preparation and characterization of energetic Al-Mg mechanical alloy powders. Combust. Flame, 128(3), 259–269.
  • Silvestrini, M., Genova, B., and Trujillo, F.J.L. 2008. Correlations for flame speed and explosion overpressure of dust clouds inside industrial enclosures. J. Loss Prev. Process Ind., 21, 374–392.
  • Wright, A., Goroshin, S., and Higgins, A. 2015. An attempt to observe the discrete flame propagation regime in aluminum dust clouds. Presented at the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds, UK, August 2–7.
  • Yetter, R.A., Risha, G.A., and Son, S.F. 2009. Metal particle combustion and nanotechnology. Proc. Combust. Inst., 32(2), 1819–1838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.