226
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Study on Gasoline-Air Mixture Deflagration Flame with Different Equivalence Ratios in a Closed Vessel

, , , , &
Pages 20-31 | Received 01 May 2017, Accepted 18 Jul 2017, Published online: 23 Oct 2017

References

  • Aldredge, R.C. 1997. On the structure of turbulent premixed flames in high-pressure combustors. Int. Commun. Heat Mass Transfer, 24(4), 565–568.
  • Aldredge, R.C., and Zuo, B. 2001. Flame acceleration associated with the Darrieus-Landau instability. Combust. Flame, 127(3), 2091–2101.
  • Bauwens, C.R., Bergthorson, J.M., and Dorofeev, S.B. 2015. Experimental study of spherical-flame acceleration mechanisms in large-scale propane–air flames. Proc. Combust. Inst., 35(2), 2059–2066.
  • Bradley, D., Hicks, R.A., Lawes, M., Sheppard, C.G.W., and Woolley, R. 1998. The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb. Combust. Flame, 115(1), 126–144.
  • Bradley, D., Lawes, M., Liu, K., Verhelst, S., and Woolley, R. 2007. Laminar burning velocities of lean hydrogen–air mixtures at pressures up to 1.0 MPa. Combust. Flame, 149(1), 162–172.
  • Celik, T. 2010. Fast and efficient method for fire detection using image processing. ETRI J., 32(6), 881–890.
  • Daintith, J. (Ed.). 2005. Dictionary of Physics, 5th ed., Oxford University Press Inc., Oxford, UK.
  • Davis, L.S. 1975. A survey of edge detection techniques. Comput. Graphics Image Process., 4(3), 248–270.
  • Davis, S.G., and Law, C.K. 1998. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust. Sci. Technol., 140(1–6), 427–449.
  • Dubois, T., Chaumeix, N., and Paillard, C.E. 2009. Experimental and modeling study of n-propylcyclohexane oxidation under engine-relevant conditions. Energy Fuels, 23(5), 2453–2466.
  • Egolfopoulos, F.N., Zhu, D.L., and Law, C.K. (1991). Experimental and numerical determination of laminar flame speeds: Mixtures of C 2-hydrocarbons with oxygen and nitrogen. Symp. (Int.) Combust., 23(1), 471–478.
  • Glassman, I., Yetter, R.A., and Glumac, N.G. 2014. Combustion, Academic Press.
  • Horng, W.B., Peng, J.W., and Chen, C.Y. 2005. A new image-based real-time flame detection method using color analysis. In 2005 IEEE International Conference on Networking, Sensing and Control, Tucson, Arizona, March 19–22; IEEE, pp. 100–105.
  • Huang, Y., Sung, C.J., and Eng, J.A. 2004. Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust. Flame, 139(3), 239–251.
  • Ihracska, B., Wen, D., Imran, S., Emberson, D.R., Ruiz, L.M., Crookes, R.J., and Korakianitis, T. 2013. Assessment of elliptic flame front propagation characteristics of hydrogen in an optically accessible spark ignition engine. Int. J. Hydrogen Energy, 38(35), 15452–15468.
  • Jerzembeck, S., Peters, N., Pepiot-Desjardins, P., and Pitsch, H. 2009. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation. Combust. Flame, 156(2), 292–301.
  • Kalghatgi, G.T., and Swords, M.D. 1983. Flame-speed measurements in an internal combustion engine. Combust. Flame, 49(1–3), 163–169.
  • Kelly, D.L., Knotts, C.R., and Wilson, L.E. 1998. U.S. Patent No. 5,720,604. Amsterdam, Nederland.
  • Knop, V., Pera, C., and Duffour, F. 2013. Validation of a ternary gasoline surrogate in a CAI engine. Combust. Flame, 160(10), 2067–2082.
  • Lees, F. 2012. Lees’ Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Butterworth-Heinemann, Oxford, UK.
  • Liu, Q., Zhang, Y., Niu, F., and Li, L. 2015. Study on the flame propagation and gas explosion in propane/air mixtures. Fuel, 140, 677–684.
  • Mannaa, O., Mansour, M.S., Roberts, W.L., and Chung, S.H. 2015. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON. Combust. Flame, 162(6), 2311–2321.
  • Marran, J.D., and Miller, S. 1995. Oil-burner, flame-intensity, monitoring system and method of operation with an out of range signal discriminator, U.S. Patent No. 5,424,554.
  • Mitu, M., and Brandes, E. 2015. Explosion parameters of methanol–air mixtures. Fuel, 158, 217–223.
  • Morgan, N., Smallbone, A., Bhave, A., Kraft, M., Cracknell, R., and Kalghatgi, G. 2010. Mapping surrogate gasoline compositions into RON/MON space. Combust. Flame, 157(6), 1122–1131.
  • Movileanu, C., Gosa, V., and Razus, D. 2012. Explosion of gaseous ethylene–air mixtures in closed cylindrical vessels with central ignition. J. Hazard. Mater., 235, 108–115.
  • Phylaktou, H., and Andrews, G.E. 1991. Gas explosions in long closed vessels. Combust. Sci. Technol., 77(1–3), 27–39.
  • Qi, S., Du, Y., Zhang, P., Li, G., Zhou, Y., and Wang, B. 2017. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion. J. Hazard. Mater., 323, 593–601.
  • Rallis, C.J., and Garforth, A.M. 1980. The determination of laminar burning velocity. Prog. Energy Combust. Sci., 6(4), 303–329.
  • Razus, D., Brinzea, V., Mitu, M., Movileanu, C., and Oancea, D. 2011. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane–air mixtures in a spherical vessel. J. Hazard. Mater., 190(1), 891–896.
  • Razus, D., Brinzea, V., Mitu, M., and Oancea, D. 2009. Explosion characteristics of LPG–air mixtures in closed vessels. J. Hazard. Mater., 165(1), 1248–1252.
  • Razus, D., Brinzea, V., Mitu, M., and Oancea, D. 2010. Temperature and pressure influence on explosion pressures of closed vessel propane–air deflagrations. J. Hazard. Mater., 174(1), 548–555.
  • Razus, D., Movileanua, C., and Oancea, D. 2007. The rate of pressure rise of gaseous propylene–air explosions in spherical and cylindrical enclosures. J. Hazard. Mater., 139(1), 1–8.
  • Sharma, R.K., Gurjar, B.R., Wate, S.R., Ghuge, S.P., and Agrawal, R. 2013. Assessment of an accidental vapour cloud explosion: Lessons from the Indian Oil Corporation Ltd. accident at Jaipur, India. J. Loss Prev. Process Ind., 26(1), 82–90.
  • Sileghem, L., Alekseev, V.A., Vancoillie, J., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2014. Laminar burning velocities of primary reference fuels and simple alcohols. Fuel, 115, 32–40.
  • Tang, C., Zhang, S., Si, Z., Huang, Z., Zhang, K., and Jin, Z. 2014. High methane natural gas/air explosion characteristics in confined vessel. J. Hazard. Mater., 278, 520–528.
  • Truong, T.X., and Kim, J.M. 2012. Fire flame detection in video sequences using multi-stage pattern recognition techniques. Eng. Appl. Artif. Intell., 25(7), 1365–1372.
  • Vagelopoulos, C.M., Egolfopoulos, F.N., and Law, C.K. 1994. Further considerations on the determination of laminar flame speeds with the counter flow twin-flame technique. Symp. (Int.) Combust., 25(1), 1341–1347.
  • Zhang, P., Du, Y., Zhou, Y., Qi, S., Wu, S., and Xu, J. 2013. Explosions of gasoline–air mixture in the tunnels containing branch configuration. J. Loss Prev. Process Ind., 26(6), 1279–1284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.