910
Views
48
CrossRef citations to date
0
Altmetric
Articles

Numerical Investigation on Flame Stabilization in DLR Hydrogen Supersonic Combustor with Strut Injection

, , &
Pages 2154-2179 | Received 23 Mar 2017, Accepted 06 Aug 2017, Published online: 11 Sep 2017

References

  • Baba-Ahmadi, M.H., and Tabor, G. 2009. Inlet conditions for LES using mapping and feedback control. Comput. Fluids., 38(6), 1299–1311.
  • Balaras, E., Benocci, C., and Piomelli, U. 1996. Two-layer approximate boundary conditions for large-eddy simulations. AIAA J., 34(6), 1111–1119.
  • Baurle, R.A., Alexopoulos, G.A., and Hassan, H.A. 1994. Assumed joint probability density function approach for supersonic turbulent combustion. J. Propul. Power., 10(4), 473–484.
  • Ben-Yakar, A., Mungal, M.A., and Hanson, R.K. 2006. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids, 18(2), 026101.
  • Berglund, M., and Fureby, C. 2007. LES of supersonic combustion in a scramjet engine model. Proc. Combust. Inst., 31(2), 2497–2504.
  • Bertin, J.J., and Cummings, R.M. 2003. Fifty years of hypersonics: Where weʼve been, where weʼre going. Prog. Aerosp. Sci., 39(6–7), 511–536.
  • Boivin, P., Dauptain, A., Jiménez, C., and Cuenot, B. 2012. Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry. Combust. Flame, 159(4), 1779–1790.
  • Boivin, P., Jiménez, C., Sánchez, A.L., and Williams, F.A. 2011. An explicit reduced mechanism for H2–air combustion. Proc. Combust. Inst., 33(1), 517–523.
  • Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., and Klippenstein, S.J. 2011. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet., 44(7), 444–474.
  • Cao, C., Ye, T., and Zhao, M. 2015. Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach. Chin. J. Aeronaut., 28(5), 1316–1327.
  • Cecere, D., Ingenito, A., Giacomazzi, E., Romagnosi, L., and Bruno, C. 2011. Hydrogen/air supersonic combustion for future hypersonic vehicles. Int. J. Hydrogen. Energy, 36(18), 11969–11984.
  • Chakravarthy, V.K., and Menon, S. 2001. Large-eddy simulation of turbulent premixed flames in the flamelet regime. Combust. Sci. Technol., 162(1), 175–222.
  • Chase, J. L., M. W., Curnutt, A. T., Hu, H. Prophet, A. N. Syverud and L. C. Walker. 1974. JANAF thermochemical Tables, 1974 Supplement.. J. Phys. Chem. Ref. Data, 3(2), 311–480.
  • Davidenko, I.G.D., and Magre, P. 2003. Numerical simulation of hydrogen supersonic combustion and validation of computational approach. Presented at the 12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, December 15–19.
  • Eklund, D.R., Drummond, J.P., and Hassan, H.A. 1990. Calculation of supersonic turbulent reacting coaxial jets. AIAA J., 28(9), 1633–1641.
  • Fulton, J.A., Edwards, J.R., Cutler, A., McDaniel, J., and Goyne, C. 2016. Turbulence/chemistry interactions in a ramp-stabilized supersonic hydrogen–air diffusion flame. Combust. Flame, 174, 152–165.
  • Fureby, C. 2012. LES for supersonic combustion. Presented at the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France, September 24–28.
  • Fureby, C., Alin, N., Wikström, N., Menon, S., Svanstedt, N., and Persson, L. 2004. Large eddy simulation of high-Reynolds-number wall bounded flows. AIAA J., 42(3), 457–468.
  • Fureby, C., Chapuis, M., Fedina, E., and Karl, S. 2011. CFD analysis of the HyShot II scramjet combustor. Proc. Combust. Inst., 33(2), 2399–2405.
  • Fureby, C., Fedina, E., and Tegnér, J. 2014. A computational study of supersonic combustion behind a wedge-shaped flameholder. Shock Waves, 24(1), 41–50.
  • Fureby, C., Gosman, A., Tabor, G., Weller, H., Sandham, N., and Wolfshtein, M. 1997. Large eddy simulation of turbulent channel flows. Turbul. Shear Flows, 11, 28–33.
  • Génin, F., and Menon, S. 2010a. Dynamics of sonic jet injection into supersonic crossflow. J. Turbul., 11, N4.
  • Génin, F., and Menon, S. 2010b. Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J., 48(3), 526–539.
  • Gong, C., Jangi, M., Bai, X.-S., Liang, J.-H., and Sun, M.-B. 2017. Large eddy simulation of hydrogen combustion in supersonic flows using an Eulerian stochastic fields method. Int. J. Hydrogen Energy, 42(2), 1264–1275.
  • Greenshields, C.J., Weller, H.G., Gasparini, L., and Reese, J.M. 2009. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids, 63(1), 1–21.
  • Heiser, W.H., and Pratt, D.T. 1994. Hypersonic Airbreathing Propulsion, Washington D C, AIAA Education .
  • Huang, Z.-W., He, G.-Q., Qin, F., and Wei, X.-G. 2015. Large eddy simulation of flame structure and combustion mode in a hydrogen fueled supersonic combustor. Int. J. Hydrogen Energy 40(31), 9815–9824.
  • Jachimowski, C.J. 1988. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion. Report NASA-TP-2791.
  • Karlsson, A. 1995. Modeling auto-ignition, flame propagation and combustion in non-stationary turbulent sprays. PhD. Chalmers University of Technology, Gothenburg, Sweden.
  • Kumaran, K., and Babu, V. 2009. Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen. Combust. Flame, 156(4), 826–841.
  • Kurganov, A., and Tadmor, E. 2000. New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys., 160(1), 241–282.
  • Li, J., Zhang, L., Choi, J.Y., Yang, V., and Lin, K.-C. 2014a. Ignition transients in a scramjet engine with air throttling. Part 1: Nonreacting flow. J. Propul. Power, 30(2), 438–448.
  • Li, J., Zhang, L., Choi, J.Y., Yang, V., and Lin, K.-C. 2014b. Ignition transients in a scramjet engine with air throttling. Part II: Reacting flow. J. Propul. Power, 31(1), 79–88.
  • Li, X., Wu, K., Yao, W., and Fan, X. 2016a. A comparative study of highly underexpanded nitrogen and hydrogen jets using large eddy simulation. Int. J. Hydrogen Energy, 41(9), 5151–5161.
  • Li, X., Yao, W., and Fan, X. 2016b. Large-eddy simulation of time evolution and instability of highly underexpanded sonic jets. AIAA J., 54(10), 3191–3211.
  • Marinov, N., Westbrook, C., and Pitz, W. 1995. Detailed and global chemical kinetics model for hydrogen. Presented at the 8th International Symposium on Transport Properties, July 16–20, 1995, San Francisco, California .
  • Nordin-Bates, K., Fureby, C., Karl, S., and Hannemann, K. 2017. Understanding scramjet combustion using LES of the HyShot II combustor. Proc. Combust. Inst., 36(2), 2893–2900.
  • Oevermann, M. 2000. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerosp. Sci. Technol., 4(7), 463–480.
  • Pino Martín, M., Piomelli, U., and Candler, G.V. 2000. Subgrid-scale models for compressible large-eddy simulations. Theor. Comput. Fluid Dyn., 13(5), 361–376.
  • Potturi, A.S., and Edwards, J.R. 2012. LES/RANS simulation of a supersonic combustion experiment. Presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, January 9–12.
  • Potturi, A.S., and Edwards, J.R. 2014. Hybrid large-eddy/Reynolds-averaged Navier–Stokes simulations of flow through a model scramjet. AIAA J., 52(7), 1417–1429.
  • Rogers, R.C., and Chinitz, W. 1983. Using a global hydrogen-air combustion model in turbulent reacting flow calculations. AIAA J., 21(4), 586–592.
  • Shi, L., Shen, H., Zhang, P., Zhang, D., and Wen, C. 2016. Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol., 189(5), 841–853.
  • Tian, L., Chen, L., Chen, Q., Li, F., and Chang, X. 2014. Quasi-one-dimensional multimodes analysis for dual-mode scramjet. J. Propul. Power, 30(6), 1559–1567.
  • Waidmann, W., Alff, F., Böhm, M., Brummund, U., Clauß, W., and Oschwald, M. 1994. Supersonic combustion of hydrogen/air in a scramjet combustion chamber. Space Technol., 15(6), 421–429.
  • Yoshizawa, A. 1986. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids, 29(7), 2152–2164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.