412
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic Characterization of a Ducted Inverse Diffusion Flame Using Recurrence Analysis

ORCID Icon, , , &
Pages 32-56 | Received 11 Feb 2017, Accepted 30 Aug 2017, Published online: 25 Sep 2017

References

  • Balasubramanian, K., and Sujith, R.I. 2008. Non-normality and nonlinearity in combustion-acoustic interaction in diffusion flames. J. Fluid Mech., 594, 29–57.
  • Balusamy, S., Li, L.K.B., Han, Z., Juniper, M.P., and Hochgreb, S. 2015. Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst., 35, 3229–3236.
  • Bastos, J.A., and Caiado, J. 2011. Recurrence quantification analysis of global stock markets. Phys. A, 390, 1315–1325.
  • Candel, S. 2002. Combustion dynamics and control: Progress and challenges. Proc. Combust. Inst., 29, 1–28.
  • Chen, L.-W., Wang, Q., and Zhang, Y. 2012. Flow characterisation of diffusion flame in a standing wave. Exp. Therm. Fluid Sci., 41, 84–93.
  • Chen, L.-W., Wang, Q., and Zhang, Y. 2013. Flow characterisation of diffusion flame under non-resonant acoustic excitation. Exp. Therm. Fluid Sci., 45, 227–233.
  • Christodoulou, L., Kabiraj, L., Saurabh, A., and Karimi, N. 2016. Characterizing the signature of flame flashback precursor through recurrence analysis. Chaos, 26, 013110.
  • Culick, F.E.C. 2006. Unsteady motions in combustion chambers for propulsion systems. AGARDograph RTO-AG-AVT-039. North Atlantic Treaty Organisation: Neuilly-sur-Seine Cedex, France.
  • Domen, S., Gotoda, H., Kuriyama, T., Okuno, Y., and Tachibana, S. 2015. Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory. Proc. Combust. Inst., 35, 3245–3253.
  • Dowling, A.P. 1995. The calculation of thermoacoustic oscillations. J. Sound Vib., 180(4), 557–581.
  • Dowling, A.P. 1997. Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech., 346, 271–290.
  • Dowling, A.P. 1999. A kinematic model of a ducted flame. J. Fluid Mech., 394, 51–72.
  • Eckmann, J.P., Kamphorst, S.O., and Ruelle, D. 1987. Recurrence plots of dynamical systems. Europhys. Lett., 4(9), 973–977.
  • Emerson, B., and Lieuwen, T. 2015. Dynamics of harmonically excited, reacting bluff body wakes near the global hydrodynamic stability boundary. J. Fluid Mech., 779, 716–750.
  • Farhat, S.A., Ng, W.B., and Zhang, Y. 2005. Chemiluminescent emission measurement of a diffusion flame jet in a loudspeaker induced standing wave. Fuel, 84, 1760–1767.
  • Feng, D.L., Zheng, J., Huang, W., Yu, C.X., and Ding, W.X. 1996. Type-I-like intermittent chaos in multicomponent plasmas with negative ions. Phys. Rev. E, 54(3), 2839–2843.
  • Frank, M., and Schmidt, M. 1997. Time series investigations on an experimental system driven by phase transitions. Phys. Rev. E, 56(3), 2423–2428.
  • Fraser, A.M., and Swinney, H.L. 1986. Independent coordinates for strange attractors from mutual information. Phys. Rev. A, 33(2), 1134–1140.
  • Górski, G., Litak, G., Mosdorf, R., and Rysak, A. 2015. Two phase flow bifurcation due to turbulence: Transition from slugs to bubbles. Eur. Phys. J., B, 88, 239.
  • Gotoda, H., Nikimoto, H., Miyano, T., and Tachibana, S. 2011. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos, 21, 013124.
  • Gotoda, H., Okuno, Y., Hayashi, K., and Tachibana, S. 2015. Characterization of degeneration process in combustion instability based on dynamical systems theory. Phys. Rev. E, 92, 025906.
  • Grassberger, P., and Procaccia, I. 1983. Measuring the strangeness of strange attractors. Phys. D, 9, 189–208.
  • Hammer, P.W., Platt, N., Hammel, S.M., Heagy, J.F., and Lee, B.D. 1994. Experimental observation of on-off intermittency. Phys. Rev. Lett., 73(8), 1095–1098.
  • Herzel, H., Plath, P., and Svensson, P. 1991. Experimental evidence of homoclinic chaos and type-II intermittency during the oxidation of methanol. Phys. D, 48, 340–352.
  • Hilborn, R.C. 2000. Chaos and Nonlinear Dynamics, 2nd ed., Oxford University Press, New York.
  • Holmes, P. 1990. Can dynamical systems approach turbulence?. In J. Lumley (Ed.), Whither Turbulence? Turbulence at the Crossroads, Springer-Verlag: Heidelberg, Germany, pp. 195–249.
  • Huang, Y., and Yang, V. 2004. Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: Transition from stable to unstable flame. Combust. Flame, 136, 383–389.
  • Illingworth, S.J., Waugh, I.C., and Juniper, M.P. 2013. Finding thermoacoustic limit cycles for a ducted Burke-Schumann flame. Proc. Combust. Inst., 34, 911–920.
  • Jacob, R., Harikrishnan, K.P., Misra, R., and Ambika, G. 2016. Characterization of chaotic attractors under noise: a recurrence network perspective. Commun. Nonlinear Sci. Numer. Simulat., 41, 32–47.
  • Jegadeesan, V., and Sujith, R.I. 2013. Experimental investigation of noise induced triggering in thermoacoustic systems. Proc. Combust. Inst., 34, 3175–3183.
  • Kabiraj, L., Saurabh, A., Nawroth, H., and Paschereit, C.O. 2015. Recurrence analysis of combustion noise. AIAA J., 53(5), 1199–1210.
  • Kabiraj, L., Saurabh, A., Wahi, P., and Sujith, R.I. 2012. Route to chaos for combustion instability in ducted laminar premixed flames. Chaos, 22, 023129.
  • Kabiraj, L., and Sujith, R.I. 2012. Nonlinear self-excited thermoacoustic oscillations: Intermittency and flame blowout. J. Fluid Mech., 713, 376–397.
  • Kaplan, C.R., and Kailasanath, K. 2001. Flow-field effects on soot formation in normal and inverse methane-air diffusion flames. Combust. Flame, 124, 275–294.
  • Karimi, N., Brear, M.J., Jin, S.H., and Monty, J.P. 2009. Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust. Flame, 156, 2201–2212.
  • Kashinath, K., Waugh, I.C., and Juniper, M.P. 2014. Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcation and routes to chaos. J. Fluid Mech., 761, 399–430.
  • Kennel, M.B., Brown, R., and Abarbanel, H.D.I. 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A, 45(6), 3403–3411.
  • Kim, K.T. 2017. Nonlinear interactions between the fundamental and higher harmonics of self-excited combustion instabilities. Combust. Sci. Technol., 189, 1091–1106.
  • Kim, K.T., and Hochgreb, S. 2012. Measurements of triggering and transient growth in a model lean-premixed gas turbine combustor. Combust. Flame, 159, 1215–1227.
  • Kinugawa, H., Ueda, K., and Gotoda, H. 2016. Chaos of radiative heat-loss-induced flame front instability. Chaos, 26, 033104.
  • Klimaszewska, K., and Żebrowski, J.J. 2009. Detection of the type of intermittency using characteristic patterns in recurrence plots. Phys. Rev. E, 80, 026214.
  • Lieuwen, T.C. 2002. Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propul. Power, 18(1), 61–67.
  • Llop, M.F., Gascons, N., and Llauró, F.X. 2015. Recurrence plots to characterize gas-solid fluidization regimes. Int. J. Multiphase Flow, 73, 43–56.
  • Magina, N., Acharya, V., Sun, T., and Lieuwen, T. 2015. Propagation, dissipation, and dispersion of disturbances on harmonically forced, non-premixed flames. Proc. Combust. Inst., 35, 1097–1105.
  • Magina, N., Shin, D.-H., Acharya, V., and Lieuwen, T. 2013. Response of non-premixed flames to bulk flow perturbations. Proc. Combust. Inst., 34, 963–971.
  • Magina, N., Steele, W., Emerson, B., and Lieuwen, T. 2017. Spatio-temporal evolution of harmonic disturbances on laminar, non-premixed flames: measurements and analysis. Combust. Flame, 180, 262–275.
  • Magina, N.A., and Lieuwen, T.C. 2014. Effect of axial diffusion on the response of over-ventilated diffusion flames to axial flow perturbations. Presented at the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, January, 2014.
  • Magina, N.A., and Lieuwen, T.C. 2016. Effect of axial diffusion on the response of diffusion flames to axial flow perturbations. Combust. Flame, 167, 395–408.
  • Mahesh, S., and Mishra, D.P. 2008. Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner. Fuel, 87, 2614–2619.
  • Mahesh, S., and Mishra, D.P. 2010. Flame structure of LPG-air inverse diffusion flame in a backstep burner. Fuel, 89, 2145–2148.
  • Marwan, N., Romano, M.C., Thiel, M., and Kurths, J. 2007. Recurrence plots for the analysis of complex systems. Phys. Rep., 438, 237–329.
  • McManus, K.R., Poinsot, T., and Candel, S.M. 1993. A review of active control of combustion instabilities. Prog. Energy Combust. Sci., 19, 1–29.
  • Miao, J., Leung, C.W., Cheung, C.S., Huang, Z., and Jin, W. 2016. Effect of H2 addition on OH distribution of LPG/air circumferential inverse diffusion flame. Int. J. Hydrogen Energy, 41, 9653–9663.
  • Mondal, S., Mukhopadhyay, A., and Sen, S. 2014. Dynamic characterization of a laboratory-scale pulse combustor. Combust. Sci. Technol., 186, 139–152.
  • Mosdorf, R., and Górski, G. 2015. Detection of two-phase flow patterns using the recurrence network analysis of pressure fluctuations. Int. Commun. Heat Mass Transfer, 64, 14–20.
  • Nair, V., and Sujith, R.I. 2013. Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos, 23, 033136.
  • Nair, V., and Sujith, R.I. 2015a. Intermittency as a transition state in combustor dynamics: An explanation for flame dynamics near lean blowout. Combust. Sci. Technol., 187, 1821–1835.
  • Nair, V., and Sujith, R.I. 2015b. A reduced-order model for the onset of combustion instability: Physical mechanisms for intermittency and precursors. Proc. Combust. Inst., 35, 3193–3200.
  • Nair, V., Thampi, G., and Sujith, R.I. 2014. Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech., 756, 470–487.
  • Nakano, S., Hirata, Y., Iwayama, K., and Aihara, K. 2015. Intra-day response of foreign exchange markets after the Tohoku-Oki earthquake. Phys. A, 419, 203–214.
  • Nayfeh, A.H., and Balachandran, B. 2004. Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  • Ott, E. 1993. Chaos in Dynamical Systems, Cambridge University Press, Cambridge, UK.
  • Panja, S., Sen, U., Gangopadhyay, T., Roy, R., Sen, S., and Mukhopadhyay, A. 2015. Comparison of thermoacoustic characteristics of a ducted non-premixed flame and a ducted inverse diffusion flame. In Proceedings of the Forty Second National Conference on Fluid Mechanics and Fluid Power, NIT Surathkal, Karnataka, India.
  • Parthimos, D., Edwards, D.H., and Griffith, T.M. 2003. Shil’nikov chaos is intimately related to type-III intermittency in isolated rabbit arteries: Role of nitric oxide. Phys. Rev. E, 67, 051922.
  • Pawar, S.A., Vishnu, R., Vadivukkarasan, M., Panchagnula, M.V., and Sujith, R.I. 2016. Intermittency route to combustion instability in a laboratory spray combustor. J. Eng. Gas Turbine Power, 138, 041505.
  • Rayleigh, J.W.S. 1878. The explanation of certain acoustical phenomena. Nature, 18, 319–321.
  • Schlenker, J., Socha, V., Riedlbauchová, L., Nedělka, T., Schlenker, A., Potǒcková, V., Malá, Š., and Kutílek, P. 2016. Recurrence plot of heart rate variability signal in patients with vasovagal syncopes. Biomed. Signal Process. Contr., 25, 1–11.
  • Schuster, H.G., and Just, W. 2005. Deterministic Chaos: An Introduction, 4th ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  • Sen, U., Gangopadhyay, T., Bhattacharya, C., Misra, A., Karmakar, S., Sengupta, P., Mukhopadhyay, A., and Sen, S. 2016. Investigation of ducted inverse nonpremixed flames using dynamic systems approach. In Proceedings of ASME Turbo Expo, p. V04BT04A059.
  • Sen, U., Panja, S., Gangopadhyay, T., Roy, R., Sen, S., and Mukhopadhyay, A. 2015. Thermoacoustic characteristics of a ducted non-premixed lifted flame. In Proceedings of the 2nd National Propulsion Conference, IIT Bombay, Powai, Mumbai, Maharashtra, India.
  • Sobiesiak, A., Rahbar, S., and Becker, H.A. 1988. Performance characteristics of the novel low-NOx CGRI burner for use with high air preheat. Combust. Flame, 115, 93–125.
  • Sobiesiak, A., and Wenzell, J.C. 2005. Characteristic and structure of inverse flames of natural gas. Proc. Combust. Inst., 30, 743–749.
  • Stone, E., Gorman, M., el Hamdi, M., and Robbins, K.A. 1996. Identification of ordered patterns as heteroclinic connections. Phys. Rev. Lett., 76(12), 2061–2064.
  • Stone, E., and Holmes, P. 1991. Unstable fixed points, heteroclinic cycles and exponential tails in turbulence production. Phys. Lett. A, 155(1), 29–42.
  • Stow, S.R., and Dowling, A.P. 2001. Thermoacoustic oscillations in an annular combustor. In Proceedings of ASME Turbo Expo, American Society of Mechanical Engineers: New York, USA. p. V002T02A004.
  • Sunderland, P.B., Krishnan, S.S., and Gore, J.P. 2004. Effects of oxygen enhancement and gravity on normal and inverse laminar jet diffusion flames. Combust. Flame, 136, 254–256.
  • Sze, L.K., Cheung, C.S., and Leung, C.W. 2006. Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design. Combust. Flame, 144, 237–248.
  • Takagi, T., Xu, Z., and Komiyama, M. 1996. Preferential diffusion effects on the temperature in usual and inverse diffusion flames. Combust. Flame, 106, 252–260.
  • Takens, F. 1981. Detecting strange attractors in turbulence. In D. A. Rand and L. S. Young (Eds.), Dynamical Systems and Turbulence (Lecture Notes in Mathematics), Springer-Verlag, Berlin.
  • Turns, S.R. 2000. An Introduction to Combustion: Concepts and Applications, McGraw-Hill Book Co., Singapore.
  • Tyagi, M., Chakravarthy, S.R., and Sujith, R.I. 2007. Unsteady combustion response of a ducted non-premixed flame and acoustic coupling. Combust. Theor. Model., 11(2), 205–226.
  • Vishnu, R., Sujith, R.I., and Aghalayam, P. 2015. Role of flame dynamics on the bifurcation characteristics of a ducted V-flame. Combust. Sci. Technol., 187, 894–905.
  • Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. 1985. Determining Lyapunov exponents from a time series. Phys. D, 16, 285–317.
  • Wu, X., Wang, M., Moin, P., and Peters, N. 2003. Combustion instability due to the nonlinear interaction between sound and flame. J. Fluid Mech., 497, 23–53.
  • Yan, J., Wang, Y., Ouyang, G., Yu, T., and Li, X. 2016. Using max entropy ratio of recurrence plot to measure electrocorticogram changes in epilepsy patients. Phys. A, 443, 109–116.
  • Yang, L.-P., Ding, S.-L., Litak, G., Song, E.-Z., and Ma, X.-Z. 2015. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine. Chaos, 25, 013105.
  • Yang, L.-P., Song, E.-Z., Ding, S.-L., Brown, R. J., Marwan, N., and Ma, X.-Z. 2016. Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine. Appl. Energy, 183, 746–759.
  • Zou, Y. 2007. Exploring recurrences in quasiperiodic dynamical systems. PhD thesis. University of Potsdam, Germany.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.