171
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Chemical Ionization of n-Hexane, Acetylene, and Methane behind Reflected Shock Waves

, , , , &
Pages 57-81 | Received 27 Jul 2016, Accepted 30 Aug 2017, Published online: 26 Sep 2017

References

  • Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M. 2015. Soot formation during the pyrolysis and oxidation of acetylene and ethylene in shock waves. Kinet. Catal., 56 (1), 12.
  • Agafonov, G.L., Mikhailov, D.I., Smirnov, V.N., Tereza, A.M., Vlasov, P.A., and Zhiltsova, I.V. 2016. Shock tube and modeling study of chemical ionization in the oxidation of acetylene and methane mixtures. Combust. Sci. Technol., 188(11–12), 1815.
  • Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A. 2010. Shock tube and modeling study of soot formation during pyrolysis of propane, propane/toluene and rich propane/oxygen mixtures. Combust. Sci. Technol., 182, 1645.
  • Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A. 2011. Shock tube and modeling study of soot formation during the pyrolysis and oxidation of a number of aliphatic and aromatic hydrocarbons. Proc. Combust. Inst., 33, 625.
  • Ballester, J., and Garcia-Armingol, T. 2010. Diagnostic techniques for the monitoring and control of practical flames. Prog. Energy Combust. Sci., 36, 375.
  • Bauerle, S., Klatt, M., and Wagner, H.Gg. 1995. Recombination and decomposition of methylene radicals at high-temperatures. Ber. Bunsenges. Phys. Chem., 99, 870.
  • Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, T., Kerr, J.A., Murrells, T., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J. 1994. Evaluated kinetic data for combustion modeling supplement—I. J. Phys. Chem. Ref. Data, 23(6), 847.
  • Becker, K.H., Kley, D., and Norstrom, R.J. 1969. OH* chemiluminescence in hydrocarbon atom flames. Proc. Combust. Inst., 12, 405.
  • Bowser, R.J., and Weinberg, F.J. 1976. Chemi-ionisation during pyrolysis. Combust. Flame, 27, 21.
  • Calcote, H.F. 1949. Electric properties of flames: Burner flames in transverse electric fields. Proc. Combust. Inst., 3, 245.
  • Calcote, H.F. 1957. Mechanisms for the formation of ions in flames. Combust. Flame, 1(4), 385.
  • Calcote, H.F. 1962. Ion production and recombination in flames. Proc. Combust. Inst., 8, 184.
  • Calcote, H.F. 1963. Ion and electron profiles in flames. Proc. Combust. Inst., 9(1), 622.
  • Cancian, J., Bennett, B.A.V., Colket, M.B., and Smooke, M.D. 2013. Prediction of electron and ion concentrations in low-pressure premixed acetylene and ethylene flames. Combust. Theor. Model., 17, 294.
  • Cheung, A.Y., and Koopman, D.W. 1972. A Lecher wire microwave interferometer for measurements of electron density and electron temperature in a flowing transient plasma. Rev. Sci. Instrum., 43(10), 1444.
  • Chung, P.M., Talbot, L., and Touryan, K.J. 1975. Electric Probes in Stationary and Flowing Plasmas: Theory and Application, Springer-Verlag, Berlin-Heidelberg-New York.
  • Cool, T.A., and Tjossem, P.J.H. 1984. Direct observations of chemiionization in hydrocarbon flames enhanced by laser excited CH*(A2Δ) and CH*(B2Σ−). Chem. Phys. Lett., 111(1–2), 82.
  • Davidson, D.F., Ranganath, S.C., Lam, K.-Y., Liaw, M., Hong, Z., and Hanson, R.K. 2010. Ignition delay time measurements of normal alkanes and simple oxygenates. J. Propul. Power, 26, 280.
  • Dean, A.M., and Westmoreland, P.R. 1987. Bimolecular QRRK analysis of methyl radical reactions. Int. J. Chem. Kinet., 19, 207.
  • Docquier, N., and Candel, S. 2002. Combustion control and sensors: A review. Prog. Energy Combust. Sci., 28, 107.
  • Dombrowsky, Ch., Hwang, S.M., Rohrig, M., and Wagner, H.Gg. 1992. The formation of O and H atoms in the reaction of CH2 with O2 at high temperatures. Ber. Bunsenges. Phys. Chem., 96, 194.
  • Dyke, J.M. 1987. Properties of gas-phase ions. Information to be obtained from photoelectron spectroscopy of unstable molecules. J. Chem. Soc., Faraday Trans., 83(2), 69.
  • Dyke, J.M., Shaw, A.M., and Wright, T.G. 1992. Studies of some gas-phase metal oxidation reactions by photoelectron and chemielectron spectroscopy. In A. Fontijn, A. (Ed.), Gas-Phase Metal Reactions, Elsevier, Amsterdam, pp. 467–492.
  • Dyke, J.M., Shaw, A.M., and Wright, T.G. 1994. Study of chemiionization reactions in the O+2-butyne reaction mixture. J. Phys. Chem., 98, 6327.
  • Dyke, J.M., Shaw, A.M., and Wright, T.G. 1995. A chemielectron study of associative ionization reactions in hydrocarbon flames. J. Phys. Chem., 99, 14207.
  • Eisfeld, W. 2005. Ab initio calculation of electronic absorption spectra and ionization potentials of C3H3 radicals. Phys. Chem. Chem. Phys., 7, 3924.
  • Eraslan, A.N., and Brown, R.C. 1988. Chemiionization and ion-molecule reactions in fuel-rich acetylene flames. Combust. Flame, 74, 19.
  • Ewing, J.J., Milstein, R., and Berry, R.S. 1971. Curve crossing in collisional dissociation of alkali halide molecules. J. Chem. Phys., 54(4), 1752.
  • Fialkov, A.B. 1997. Investigation on ions in flames. Prog. Energy Combust. Sci., 23, 399.
  • Fontijn, A. 1974. Recent progress in chemi-ionization kinetics. Pure Appl. Chem., 39, 287
  • Frank, P., Bhaskaran, K.A., and Just, T. 1986. High temperature reactions of triplet methylene and ketene with radicals. J. Phys. Chem., 90, 2226.
  • Frank, P. and Just, T. 1984. High temperature kinetics of ethylene-oxygen reaction. In B.E. Milton and R.D. Archer (Eds.), Shock Tubes and Waves: Proceedings of the 14th International Symposium on Shock Tubes and Shock Waves, University of Sydney, New South Wales, Australia, Sydney Shock Tube Symposium Publishers (distributed by University of New South Wales Press), Springer, New York), pp. 705–714.
  • Gaydon, A.G., and Hurle, I.R. 1963. The Shock Tube in High-Temperature Chemical Physics, Chapman and Hall, London, 307 pp.
  • Gaydon, A.G., and Wolfhard, H.G. 1960. Flames, Their Structure, Radiation and Temperature, Chapman and Hall, London, 383 pp.
  • Glass, G.P., Kistiakowsky, G.B., Michael, J.V., and Niki, H. 1965. Mechanism of the acetylene-oxygen reaction in shock waves. J. Chem. Phys., 42, 608.
  • Golant, V.E. 1968. Microwave Methods of Plasma Diagnostics, Nauka, Moscow.
  • Hartig, R., Olschewski, H.A., Troe, J., and Wagner H.Gg. 1968. Thermischer zerfall gasförmiger alkali halogenide. Ber. Bunsenges. Phys. Chem., 72(8), 1016.
  • Heald, M.A., and Wharton, C.B. 1965. Plasma Diagnostics with Microwaves, Wiley, London, New York, 452 pp.
  • Herzberg, G. 1971. The Spectra and Structures of Simple Free Radicals, Cornell University Press, Ithaca, London, 206 pp.
  • Hidaka, Y., Nishimori, T., Sato, K., Henmi, Y., Okuda, R., Inami, K., and Higashihara, T. 1999. Shock-tube and modeling study of ethylene pyrolysis and oxidation. Combust. Flame, 117, 755.
  • Jones, H.R.N., and Hayhurst, A.N. 2016. Measurements of the concentrations of positive and negative ions along premixed fuel-rich flames of methane and oxygen. Combust. Flame, 166, 86.
  • Kalitan, D.M., Hall, J.M., and Petersen, E.L. 2005. Ignition and oxidation of ethylene–oxygen diluent mixtures with and without silane. J. Propul. Power, 21, 1045.
  • Karasevich, Yu.K. 2009a. Kinetics of chemical ionization in shock waves: II. Kinetic model of ionization in methane oxidation. Kinet. Catal., 50(1), 73.
  • Karasevich, Yu.K. 2009b. Kinetics of chemical ionization in shock waves: IV. Kinetic model of ionization in acetylene oxidation. Kinet. Catal., 50(5), 617.
  • Kern, R.D., Singh, H.J., and Xie, K. 1990. Identification of chemi-ions formed by reactions of deuterated fuels in the reflected shock zone. J. Phys. Chem., 94, 3333.
  • Knewstubb, P.F., and Sugden, T.M. 1959. Mass spectrometry of the ions present in hydrocarbon flames. Proc Combust Inst., 7, 247.
  • Lam, K.-Y. 2013. Shock tube measurements of oxygenated fuel combustion using laser absorption spectroscopy. PhD thesis. Stanford University, Stanford, CA.
  • Lawton, J., and Weinberg, F.J. 1969. Electrical Aspects of Combustion, Clarendon Press, Oxford, 355 pp.
  • Lichtin, D.A., Berman, M.R., and Lin, M.C. 1984. NH (A3Π → X3Σ−) chemiluminescence from the CH(X2Π) + NO reaction. Chem. Phys. Lett., 108, 18.
  • Markus, M.W., Roth, P., and Tereza, A.M. 1994. Thermal decomposition of CH2 verified by product concentration measurements of C, H, and CH. Proc. Combust. Inst., 25, 705.
  • Markus, M.W., Woiki, D., and Roth, P. 1992. Two-channel thermal decomposition of CH3. Proc. Combust. Inst., 24, 581.
  • McBride, B.J., Zehe, M.J., and Gordon, S. 2002. Glenn coefficients for calculating thermodynamic properties of individual species. Report No. NASA/TP-2002-211556, Glenn Research Center, Cleveland, OH.
  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J. 2013. A hierarchical and comparative kinetic modeling study of C1–C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 45, 638.
  • Mie, G. 1900. Electrische Wellen an zwei parallelen Drähten. Ann. der Phys., 2, 201.
  • Prager, J. 2005. Modeling and simulation of charged species in lean methane-oxygen flames. Doctoral dissertation. Ruprecht-Karls-Universit, Heidelberg.
  • Prager, J., Riedel, U., and Warnatz, J. 2007. Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames. Proc. Combust. Inst., 31, 1129.
  • Rohrig, M., Petersen, E.L., Davidson, D.F., Hanson, R.K., and Bowman, C.T. 1997. Measurement of the rate coefficient of the reaction CH + O2 = products in the temperature range 2200 to 2600 K. Int. J. Chem. Kinet., 29, 781.
  • Schneider, K.-P., and Park, C. 1975. Shock tube study of ionization rates of NaCl-contaminated argon. Phys. Fluids, 18(8), 969.
  • Schofield, K. 2008. The enigmatic mechanism of the flame ionization detector: Its overlooked implications for fossil fuel combustion modeling. Prog. Energy Combust. Sci., 34, 330.
  • Smirnov, V.N., Tereza, A.M., Vlasov, P.A., and Zhiltsova, I.V. 2017. Luminescent characteristics of the shock-wave ignition of an ethylene-oxygen mixture. Combust. Sci. Technol., 189(5), 854.
  • Smy, P.R. 1976. The use of Langmuir probes in the study of high pressure plasmas. Adv. Phys., 25(5), 517.
  • Tereza, A.M., Slutskii, V.G., and Severin, E.S. 2010. Autoignition of ethylene in shock waves. Russ. J. Phys. Chem. B, 4(3), 475.
  • Tsang, W., and Hampson, R.F. 1986. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J. Phys. Chem. Ref. Data, 15, 1087.
  • Tudisco, O., Fabris, A.L., Falcetta, C., Accatino, L., De Angelis, R., Manente, M., Ferri, F., Florean, M., Neri, C., Mazzotta, C., Pavarin, D., Pollastrone, F., Rocchi, G., Selmo, A., Tasinato, L., Trezzolani, F., and Tuccillo, A.A. 2013. A microwave interferometer for small and tenuous plasma density measurements. Rev. Sci. Instrum., 84, 033505.
  • Vlasov, P.A. 2000. Probe methods of diagnostics of chemically reacting dense plasma. In A.A. Ovsyannikov and M.F. Zhukov (Eds.), Plasma Diagnostics, Cambridge International Science Publishing, Cambridge, UK, pp. 299–337.
  • Vlasov, P.A., Demidenko, T.S., Smirnov, V.N., Tereza, A.M., and Atkin, E.V. 2016. Chemiluminescent emission of CH*, C2*, OH*, and CO2* during the ignition of ethane behind reflected shock waves. Russ. J. Phys. Chem. B, 10(6), 983.
  • Wang, H., Dames, E., Sirjean, B., Sheen, D.A., Tangko, R., Violi, A., Lai, J.Y.W., Egolfopoulos, F.N., Davidson, D.F., Hanson, R.K., Bowman, C.T., Law, C.K., Tsang, W., Cernansky, N.P., Miller, D.L., and Lindstedt, R.P. 2010. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurF version 2.0. Available at: http://melchior.usc.edu/JetSurF/JetSurF2.0.
  • Wharton, C.B. 1965. Microwave techniques. In R.H. Huddlestone and S.L. Leonard (Eds.), Plasma Diagnostic Techniques, Academic Press, New York, London, 477 pp.
  • Wheeler, S.E., Robertson, K.A., Allen, W.D., Schaefer III, H.F., Bomble, Y.B., and Stanton, J.F. 2007. Thermochemistry of key soot formation intermediates: C3H3 isomers. J. Phys. Chem. A, 111, 3819.
  • Zavarin, D.G., Rozhdestvenskii, V.V., and Tumakaev, G.K. 1979. Microwave interferometer with a spatial resolution of 0.1 lambda. In E.M. Shelkov (Ed.), Low-Temperature Plasma Diagnostics, Izdatel’stvo Nauka, Moscow, pp. 154–158.
  • Zhang, K., Banyon, C., Togbe, C., Dagaut, Ph., Bugler, J., and Curran, H.J. 2015. An experimental and kinetic modeling study of n-hexane oxidation. Combust. Flame, 162(11), 4194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.