414
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Pyrolysis and Combustion of Regional Agro-Industrial Wastes: Thermal Behavior and Kinetic Parameters Comparison

, , , &
Pages 114-135 | Received 21 Jan 2017, Accepted 05 Sep 2017, Published online: 28 Sep 2017

References

  • Abdullah, H., and Wu, H. 2009. Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuels, 23, 4174–4181.
  • Abed, I., Paraschiv, M., Loubar, K., Zagrouba, F., and Tazerout, M. 2012. Thermogravimetric investigation and thermal conversion kinetics of typical North African and middle eastern lignocellulosic wastes. BioResources, 7(1), 1200–1220.
  • Ahmad, M., Rajapaksha, A., Lim, J., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S., Ok, Y. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–23.
  • Aouad, A., Bilali, L., Benchanâa, M., and Mokhlisse, A. 2002. Kinetic aspect of thermal decomposition of natural phosphate and its kerogen: Influence of heating rate and mineral matter. J. Therm. Anal. Calorim., 67, 733–743.
  • Bhavanam, A., and Sastry, R.C. 2014. Kinetic study of solid waste pyrolysis using distributed activation energy model. Bioresour. Technol., 178, 126–131.
  • Biney, P., Gyamerah, M., Shen, J., and Menezes, B. 2015. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model. Bioresour. Technol., 179, 113–122
  • Borah, D., Barua, M., and Baruah, M.K. 2005. Dependence of pyrite concentration on kinetics and thermodynamics of coal pyrolysis in non-isothermal systems. Fuel Process. Technol., 86, 977–993.
  • Cai, J., Wu, W., and Liu, R. 2014. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass. Renewable Sustainable Energy Rev., 36, 236–246.
  • Carlson, T.R., Cheng, Y.T., Jae, J., and Huber, G.W. 2011. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci., 4, 145–161.
  • Carpenter, D., Westover, T.L., Czernik, S., and Jablonski, W. 2014. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem., 16, 384–406.
  • Ceylan, S., and Topcu, Y. 2014. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour. Technol., 156, 182–188.
  • Channiwala, S.A., and Parikh, P.P. 2002. Unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051–1063.
  • Chouchene, A., Jeguirim, M., Khiari, B., Zagrouba, F., and Trouvé, G. 2010. Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration. Resourc., Conserv. Recycl., 54, 271–277.
  • Crnkovic, P.M., Koch, C., Ávila, I., Mortari, D.A., Cordoba, A.M., and Moreira dos Santos, A. 2012. Determination of the activation energies of beef tallow and crude glycerin combustion using thermogravimetry. Biomass Bioenergy, 44, 8–16.
  • Damartzis, T., Vamvuka, D., Sfakiotakis, S., and Zabaniotou, A. 2011. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour. Technol., 102, 6230–6238.
  • Daouk, E., Van de Steene, L., Paviet, F., and Salvador, S. 2015. Thick wood particle pyrolysis in an oxidative atmosphere. Chem. Eng. Sci., 126, 608–615.
  • Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis, 72(2), 243–248.
  • Demirbas, A., and Arin, G. 2002. An overview of biomass pyrolysis. Energy Sources, 24(5), 471–482.
  • Department of Minerals and Energy. 2003. White Paper on Renewable Energy. Department of Minerals and Energy, Republic of South Africa.
  • Di Blasi, C. 2008. Modeling chemical and physical process of wood and biomass pyrolysis. Prog. Energy Combust. Sci., 34, 47–90.
  • Doyle, C.D. 1961. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal. Chem., 33, 77–79.
  • Dufour, A., Weng, J., Jia, L., Tang, X., Sirjean, B., Fournet, R., et al. 2013. Revealing the chemistry of biomass pyrolysis by means of tunable synchrotron photoionisation–mass spectrometry. RSC Adv., 3, 4786–4792.
  • Ericsson, K., and Werner, S. 2016. The introduction and expansion of biomass use in Swedish district heating systems. Biomass Bioenergy, 94, 57–65.
  • Fernandez, A., Saffe, A., Mazza, G., and Rodriguez, R. 2017. Kinetic analysis of regional agro-industrial waste combustion. Biofuels, 8(1), 71–80.
  • Fernandez, A., Saffe, A., Pereyra, R., Mazza, G., and Rodriguez, R. 2016. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Appl. Therm. Eng., 106, 1157–1164.
  • Fiori, L., Valbusa, M., Lorenzi, D., and Fambri, L. 2012. Modeling of the devolatilization kinetics during pyrolysis of grape residues. Bioresour. Technol., 103, 389–397.
  • Font, R., Fullana, A., and Conesa, J. 2005. Kinetic models for the pyrolysis and combustion of two types of sewage sludge. J. Anal. Appl. Pyrolysis, 74, 429–438.
  • Gao, W., Chen, K., Xiang, Z., Yang, F., Zeng, J., Li, J., Yang, R., Rao, G., Tao, H. 2013. Kinetic study on pyrolysis of tobacco residues from the cigarette industry. Ind. Crops Prod., 44, 152–157.
  • George, A., Morgan, T., and Kandiyoti, R. 2014. Pyrolytic reactions of lignin within naturally occurring plant matrices: Challenges in biomass pyrolysis modeling due to synergistic effects energy. Fuels, 28, 6918−6927.
  • Grammelis, P., Basinas, P., Malliopoulou, A., and Sakellaropoulos, G. 2009. Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel, 88(1), 195–205.
  • INTA (Instituto Nacional de Tecnología Agropecuaria). 2015. Informes Técnicos. INTA, Argentina. ISSN 22508481.
  • Jahirul, M.I., Rasul, M.G., Chowdhury, A.A., and Ashwath, N. 2012. Biofuels production through biomass pyrolysis—A technological review. Energies, 5, 4952–5001.
  • Jeguirim, M., and Trouvé, G. 2009. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour. Technol., 100, 4026–4031.
  • Jiang, X.M., Han, X.X., and Cui, Z.G. 2006. Mechanism and mathematical model of Huadian oil shale pyrolysis. J. Therm. Anal. Calorim., 86, 457–462.
  • Jung, C., Park, J., Lim, K.H., Park, S., Heo, J., Her, N., et al. 2013. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J. Hazard Mater., 263, 702–710.
  • Kök, M.V. 1998. Temperature-controlled combustion and kinetics of different rank coal samples. J. Therm. Anal. Calorim., 79, 175–180.
  • Kök, M.V. 2003. Coal pyrolysis: Thermogravimetric study and kinetic analysis. Energy Sources, 25, 1007–1014.
  • Kök, M.V., and Karacan, O. 1998. Pyrolysis analysis and kinetics of crude oils. J. Therm. Anal. Calorim., 52, 781–788.
  • Kök, M.V., and Pamir, R. 2003. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 20, 57–68.
  • Lehmann, J. 2007. A handful of carbon. Nature, 447, 143–144.
  • Lestander, T.A., and Rhén, C. 2005. Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression. Analyst, 130(8), 1182–1889.
  • Lili, L., Nan, Z., Xiaobin, F., Mingfei, S., and Song, Q. 2013. Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres. Bioresour. Technol., 140, 152–157.
  • Lopez-Velazquez, M.A., Santes, V., Balmaseda, J., and Torres-Garcia, E. 2013. Pyrolysis of orange waste: A thermo-kinetic study. J. Anal. Appl. Pyrolysis, 99, 170–177.
  • Manya, J.J. 2012. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol., 46, 7939–7954.
  • Meszaros, E., Varhegyi, G., Jakab, E., and Marosvolgyi, B. 2004. Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels, 18, 497–507.
  • Mettler, M.S., Vlachos, D.G., and Dauenhauer, P.J. 2012. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ. Sci., 5, 7797–7809.
  • Mitchell, C., and Connor, P.M. 2004. Renewable energy policy in the UK 1990–2003. Energy Policy, 32(17), 1935–1947.
  • Nunes, L.J.R., Matias, J.C.O., and Catalão, J.P.S. 2017. Biomass in the generation of electricity in Portugal: A review. Renewable Sustainable Energy Rev., 71, 373–378.
  • Parikh, J., Channiwala, S.A., and Ghosal, G.K. 2005. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84, 487–494.
  • Paulsen, A., Hough, B., Williams, C., Teixeira, A., Schwartz, D., Pfaendtner, J., and Dauenhauer, P. 2014. Fast pyrolysis of wood for biofuels: Spatiotemporally resolved diffuse reflectance in situ spectroscopy of particles. ChemSusChem, 765–776.
  • Prasad, L., Subbarao, P.M.V., and Subrahmanyam, J.P. 2014. Pyrolysis and gasification characteristics of Pongamia residue (de-oiled cake) using thermogravimetry and downdraft gasifier. Appl. Therm. Eng., 63, 379–386.
  • Quirino, W., Vale, A., Andrade, A., Abreu, V., and Azevedo, A. 2005. Poder calorífico da madeira e de materiais lignocelulósicos. Revista da Madeira, 89, 100–106.
  • Sanchez-Silva, L., López-González, D., García-Minguillan, A.M., and Valverde, J.L. 2013. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour. Technol., 130, 321–331.
  • Senelwa, K., and Sims, R.E.H. 1999. Fuel characteristics of short rotation forest biomass. Biomass Bioenergy, 17, 127–140.
  • Slopiecka, K., Bartocci, P., and Fantozzi, F. 2012. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy, 97, 491–497.
  • Talmadge, M., Baldwin, R., Biddy, M., McCormick, R., Beckham, G., Ferguson, G., Czernik, S., Magrini-Bair, K., Foust, T., Metelski, P., Hetrick, C., and Nimlos, M. 2014. A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chem., 16, 407–453.
  • Tang, Y.T., Ma, X.Q., and Lai, Z.Y. 2011. Thermo-gravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresour. Technol., 102, 1879–1885.
  • Valente, M., Brillard, A., Schönnenbeck, C., and Brilhac, J. 2015. Investigation of grape marc combustion using thermogravimetric analysis: Kinetic modeling using an extended independent parallel reaction (EIPR). Fuel Process. Technol., 131, 297–303.
  • Vand, V. 1943. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc., 55(3), 222.
  • Venkatesh, M., Ravi, P., and Tewari, S.P. 2013. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. J. Phys. Chem. A, 117, 10162–10169.
  • Volpe, R., Bermudez Menendez, J.M., Ramirez Reina, T., Messineo, A., and Millan, M. 2017. Evolution of chars during slow pyrolysis of citrus waste. Fuel Process. Technol., 158, 255–263.
  • Volpe, R., Messineo, A., and Millan, M. 2016. Carbon reactivity in biomass thermal breakdown. Fuel, 183, 139–144.
  • Vyazovkin, S. 1996. A unified approach to kinetic processing of nonisothermal data. Int. J. Chem. Kinet., 28, 95–101.
  • Vyazovkin, S., Burnhamb, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 520, 1–19.
  • Wang, S., Lin, H., Ru, B., Dai, G., Wang, X., Xiao, G., and Luo, Z. 2016. Kinetic modeling of biomass components pyrolysis using a sequential and coupling method. Fuel, 185(1), 763–771.
  • Yang, H., Yan, R., Chen, H., Lee D., and Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788.
  • Zhang, L., Liu, R., Yin, R., and Mei, Y. 2013. Upgrading of bio-oil from biomass fast pyrolysis in China: A review. Renewable Sustainable Energy Rev., 24, 66–72.
  • Zheng, G., and Kozi, J.A. 2000. Thermal events occurring during the combustion of biomass residue. Fuel, 79, 181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.