391
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Initiation Radius Selection and Lewis Number on Extraction of Laminar Burning Velocities from Spherically Expanding Flames

, ORCID Icon, , &
Pages 286-311 | Received 15 Jun 2017, Accepted 04 Oct 2017, Published online: 13 Nov 2017

References

  • Bradley, D., Gaskell, P., and Gu, X. 1996. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combust. Flame, 104, 176–198.
  • Bradley, D., Hicks, R.A., Lawes, M., Sheppard, C.G.W., and Woolley, R. 1998. The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb. Combust. Flame, 115, 126–144.
  • Bradley, D., Lawes, M., Liu, K., Verhelst, S., and Woolley, R. 2007. Laminar burning velocities of lean hydrogen–air mixtures at pressures up to 1.0 MPa. Combust. Flame, 149, 162–172.
  • Bradley, D., and Mitcheson, A. 1976. Mathematical solutions for explosions in spherical vessels. Combust. Flame, 26, 201–217.
  • Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., and Klippenstein, S.J. 2012. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet., 44, 444–474.
  • Burke, M.P., Chen, Z., Ju, Y., and Dryer, F.L. 2009. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust. Flame, 156, 771–779.
  • Cai, X., Wang, J., Zhang, W., Xie, Y., Zhang, M., and Huang, Z. 2016. Effects of oxygen enrichment on laminar burning velocities and Markstein lengths of CH4/O2/N2 flames at elevated pressures. Fuel, 184, 466–473.
  • Chen, Z. 2011. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame, 158, 291–300.
  • Chen, Z. 2015. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combust. Flame, 162, 2442–2453.
  • Chen, Z. 2017. Effects of radiation on large-scale spherical flame propagation. Combust. Flame, 183, 66–74.
  • Chen, Z., Burke, M.P., and Ju, Y. 2009a. Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames. Combust. Theor. Model., 13, 343–364.
  • Chen, Z., Burke, M.P., and Ju, Y. 2009b. Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc. Combust. Inst., 32, 1253–1260.
  • Chen, Z., Burke, M.P., and Ju, Y. 2011. On the critical flame radius and minimum ignition energy for spherical flame initiation. Proc. Combust. Inst., 33, 1219–1226.
  • Chen, Z., and Ju, Y. 2007. Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combust. Theor. Model., 11, 427–453.
  • Davis, S.G., Joshi, A.V., Wang, H., and Egolfopoulos, F. 2005. An optimized kinetic model of H2/CO combustion. Proc. Combust. Inst., 30, 1283–1292.
  • Egolfopoulos, F.N., Hansen, N., Ju, Y., Kohse-Höinghaus, K., Law, C.K., and Qi, F. 2014. Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog. Energy Combust. Sci., 43, 36–67.
  • Frankel, M., and Sivashinsky, G. 1983. On effects due to thermal expansion and Lewis number in spherical flame propagation. Combust. Sci. Technol., 31, 131–138.
  • Galmiche, B., Halter, F., and Foucher, F. 2012. Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures. Combust. Flame, 159, 3286–3299.
  • Gu, X., Huang, Z., Li, Q., and Tang, C. 2009. Measurements of laminar burning velocities and markstein lengths of n-butanol−air premixed mixtures at elevated temperatures and pressures. Energy Fuels, 23, 4900–4907.
  • Halter, F., Tahtouh, T., and Mounaïm-Rousselle, C. 2010. Nonlinear effects of stretch on the flame front propagation. Combust. Flame, 157, 1825–1832.
  • Hu, E., Huang, Z., He, J., and Miao, H. 2009. Experimental and numerical study on laminar burning velocities and flame instabilities of hydrogen–air mixtures at elevated pressures and temperatures. Int. J. Hydrogen Energy, 34, 8741–8755.
  • Karpov, V.P., Lipatnikov, A.N., and Wolanski, P. 1997. Finding the Markstein number using the measurements of expanding spherical laminar flames. Combust. Flame, 109, 436–448.
  • Kee, R.J., Grcar, J.F., Smooke, M., Miller, J., and Meeks, E. 1985. PREMIX: A Fortran program for modeling steady laminar one-dimensional premixed flames. Sandia National Laboratories, Albuquerque, NM.
  • Kee, R.J., Rupley, F.M., and Miller, J.A. 1989. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories, Livermore, CA.
  • Kelley, A.P., Bechtold, J.K., and Law, C.K. 2011. Premixed flame propagation in a confining vessel with weak pressure rise. J. Fluid Mech., 691, 26–51.
  • Kelley, A.P., Jomaas, G., and Law, C.K. 2009. Critical radius for sustained propagation of spark-ignited spherical flames. Combust. Flame, 156, 1006–1013.
  • Kelley, A.P., and Law, C.K. 2009. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust. Flame, 156, 1844–1851.
  • Kim, H.H., Won, S.H., Santner, J., Chen, Z., and Ju, Y. 2013. Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames. Proc. Combust. Inst., 34, 929–936.
  • Law, C. 2006. Combustion Physics, Cambridge University Press, Cambridge, UK.
  • Law, C.K., Jomaas, G., and Bechtold, J.K. 2005. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment. Proc. Combust. Inst., 30, 159–167.
  • Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F.L., and Scire, J.J. 2007. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int. J. Chem. Kinet., 39, 109–136.
  • Li, X., Hu, E., Meng, X., Peng, C., Lu, X., and Huang, Z. 2017a. Effect of Lewis number on nonlinear extrapolation methods from expanding spherical flames. Combustion Science and Technology, 189, 1510–1526.
  • Li, Y., Zhou, C.-W., Somers, K.P., Zhang, K., and Curran, H.J. 2017b. The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst., 36, 403–411.
  • Lipatnikov, A.N. 1996. Some issues of using Markstein number for modeling premixed turbulent combustion. Combust. Sci. Technol., 119, 131–154.
  • Lipatnikov, A.N., Shy, S.S., and Li, W.-Y. 2015. Experimental assessment of various methods of determination of laminar flame speed in experiments with expanding spherical flames with positive Markstein lengths. Combust. Flame, 162, 2840–2854.
  • Lowry, W.B., Serinyel, Z., Krejci, M.C., Curran, H.J., Bourque, G., and Petersen, E.L. 2011. Effect of methane-dimethyl ether fuel blends on flame stability, laminar flame speed, and Markstein length. Proc. Combust. Inst., 33, 929–937.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Qiao, L., Gan, Y., Nishiie, T., Dahm, W.J.A., and Oran, E.S. 2010. Extinction of premixed methane/air flames in microgravity by diluents: Effects of radiation and Lewis number. Combust. Flame, 157, 1446–1455.
  • Ronney, P.D., and Sivashinsky, G.I. 1989. A theoretical study of propagation and extinction of nonsteady spherical flame fronts. SIAM J. Appl. Math., 49, 1029–1046.
  • Varea, E., Beeckmann, J., Pitsch, H., Chen, Z., and Renou, B. 2015. Determination of burning velocities from spherically expanding H2/air flames. Proc. Combust. Inst., 35, 711–719.
  • Varea, E., Modica, V., Renou, B., and Boukhalfa, A.M. 2013. Pressure effects on laminar burning velocities and Markstein lengths for isooctane–ethanol–air mixtures. Proc. Combust. Inst., 34, 735–744.
  • Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., and Law, C.K. 2007. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. University of Southern California, Los Angeles, CA.
  • Wang, J., Xie, Y., Cai, X., Nie, Y., Peng, C., and Huang, Z. 2016. Effect of H2O addition on the flame front evolution of syngas spherical propagation flames. Combust. Sci. Technol., 188, 1054–1072.
  • Wu, C.K., and Law, C.K. 1985. On the determination of laminar flame speeds from stretched flames. Proc. Combust. Inst., 20, 1941–1949.
  • Wu, F., and Law, C.K. 2013. An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers. Combust. Flame, 160, 2744–2756.
  • Wu, F., Liang, W., Chen, Z., Ju, Y., and Law, C.K. 2015. Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames. Proc. Combust. Inst., 35, 663–670.
  • Wu, X., Huang, Z., Wang, X., Jin, C., Tang, C., Wei, L., and Law, C.K. 2011. Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures. Combust. Flame, 158, 539–546.
  • Xie, Y., Wang, J., Cai, X., and Huang, Z. 2016. Self-acceleration of cellular flames and laminar flame speed of syngas/air mixtures at elevated pressures. Int. J. Hydrogen Energy, 41, 18250–18258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.