747
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

In Situ Flame Temperature Measurements Using a Mid-Infrared Two-Line H2O Laser-Absorption Thermometry

, ORCID Icon, &
Pages 393-408 | Received 29 Jul 2017, Accepted 09 Oct 2017, Published online: 16 Nov 2017

References

  • Axelsson, B., Collin, R., and Bengtsson, P.E. 2000. Laser-induced incandescence for soot particle size measurements in premixed flat flames. Appl. Opt., 39(21), 3683–3690.
  • Bhargava, A., and Westmoreland, P.R. 1998. Measured flame structure and kinetics in a fuel-rich ethylene flame. Combust. Flame, 113(3), 333–347.
  • Bohren, C.F., and Huffman, D.R. 2008. Absorption and Scattering of Light by Small Particles, John Wiley and Sons, New York.
  • Collis, D.C., and Williams, M.J. 1959. 2D convection from heated wires at low Reynolds numbers. J. Fluid Mech., 6, 357–384.
  • Dagaut, P., and Cathonnet, M. 2006. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Prog. Energy. Combust. Sci., 32(1), 48–92.
  • Desgroux, P., Gasnot, L., Pauwels, J., and Sochet, L. 1995. Correction of LIF temperature measurements for laser absorption and fluorescence trapping in a flame. Appl. Phys. B, 61(4), 401–407.
  • Farooq, A., Jeffries, J.B., and Hanson, R.K. 2008. In situ combustion measurements of H2O and temperature near 2.5 µm using tunable diode laser absorption. Meas. Sci. Technol., 19(7), 075604.
  • Girard, J., Spearrin, R.M., Goldenstein, C.S., and Hanson, R.K. 2017. Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 µm. Combust. Flame, 178, 158–167.
  • Goldenstein, C.S. 2014. Wavelength-modulation spectroscopy for determination of gas properties in hostile environments. PhD dissertation, Stanford University, Stanford, CA.
  • Goldenstein, C.S., Spearrin, R.M., Jeffries, J.B., and Hanson, R.K. 2017. Infrared laser-absorption sensing for combustion gases. Prog. Energy. Combust. Sci., 60, 132–176.
  • Hanson, R.K., and Davidson, D.F. 2014. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy. Combust. Sci., 44, 103–114.
  • Hanson, R.K., Spearrin, R.M., and Goldenstein, C.S. 2016. Spectroscopy and Optical Diagnostics for Gases, Springer, Germany.
  • Hartlieb, A.T., Atakan, B., and Kohse-Höinghaus, K. 2000. Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames. Appl. Phys. B, 70(3), 435–445.
  • Heitor, M., and Moreira, A. 1993. Thermocouples and sample probes for combustion studies. Prog. Energy Combust. Sci., 19(3), 259–278.
  • Jomaas, G., Zheng, X., Zhu, D., and Law, C. 2005. Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures. Proc. Combust. Inst., 30(1), 193–200.
  • Kee, R.J., Dixon-Lewis. G., Warnatz, J., et al. 1986. The Chemkin transport database. Report No. SAND86-8246. Sandia National Laboratories, Livermore, CA.
  • Kiefer, J., Ossler, F., Li, Z., and Aldén, M. 2011. Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband BX excitation. Combust. Flame, 158(3), 583–585.
  • Laurendeau, N.M. 1988. Temperature measurements by light-scattering methods. Prog. Energy Combust. Sci., 14(2), 147–170.
  • Li, S., Farooq, A., and Hanson, R.K. 2011. H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 µm. Meas. Sci. Technol., 22(12), 125301.
  • Liu, X. 2006. Line-of-sight absorption of H2O vapor: Gas temperature sensing in uniform and non-uniform flows. PhD dissertation. Stanford University, Stanford, CA.
  • Ma, L.H., Lau, L.Y., and Ren, W. 2017. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy. Appl. Phys. B, 123(3), 83.
  • McEnally, C.S., Köylü, Ü.Ö., Pfefferle, L.D., Rosner, D.E. 1997. Soot volume fraction and temperature measurements in laminar non-premixed flames using thermocouples. Combust. Flame, 109(4), 701–720.
  • Muzio, L., and Quartucy, G. 1997. Implementing NOx control: Research to application. Prog. Energy Combust. Sci., 23(3), 233–266.
  • Olofsson, N.E. 2015. Laser-induced incandescence and complementary diagnostics for flame soot characterization. PhD dissertation, Lund University, Lund, Sweden.
  • Peng, W.Y., Goldenstein, C.S., Spearrin, R.M., Jeffries, J.B., and Hanson, R.K. 2016. Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows. Appl. Opt., 55(33), 9347–9359.
  • Reaction Design. 2013. CHEMKIN-PRO 15131. Reaction Design, San Diego, CA.
  • Rieker, G.B., Li, J.T., Jeffries, J.B., Mathur, T., Gruber, M.R., and Carter, C.D. 2005. Diode laser sensor for gas temperature and H2O concentration in a scramjet combustor using wavelength modulation spectroscopy. Presented at the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 10–13 July 2005, Tucson, Arizona.
  • Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Benner, D.C., Bernath, P.F., and Brown, L.R. 2013. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat., 130, 4–50.
  • Roy, S., Gord, J.R., and Patnaik, A.K. 2010. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows. Prog. Energy Combust. Sci., 36(2), 280–306.
  • Schulz, C., and Sick, V. 2005. Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. Sci., 31(1), 75–121.
  • Seery, D., and Bowman, C. 1970. Ignition delays in several CH4-O2-Ar mixtures. Combust. Flame, 14, 37–47.
  • Shaddix, C.R. 1999. Correcting thermocouple measurements for radiation loss: A critical review. Sandia National Laboratories, Livermore, CA.
  • Simonsson, J., Olofsson, N.E., Török, S., Bengtsson, P.E., and Bladh, H. 2015. Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes. Appl. Phys. B, 119(4), 657–667.
  • Smith, C.H., Goldenstein, C.S., and Hanson, R.K. 2014. A scanned-wavelength-modulation absorption-spectroscopy sensor for temperature and H2O in low-pressure flames. Meas. Sci. Technol., 25(11), 115501.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W., Jr. 1999. GRI-Mech 3.0. Available at: http://www.me.berkeley.edu/gri_mech.
  • Turns, S.R. 1995. Understanding NOx formation in non-premixed flames: Experiments and modeling. Prog. Energy Combust. Sci., 21(5), 361–385.
  • Viswanathan, R. 1985. Dissimilar metal weld and boiler creep damage evaluation for plant life extension. ASME J. Pres. Vess. Technol., 107, 218–225.
  • Wang, H., You, X., Joshi, A., Davis, S., Laskin, A., Egolfopoulos, F., and Law, C.K. 2007. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. USC 2.0 Mech. Available at: http://ignis.usc.edu/USC_Mech_II.htm.
  • Webber, M.E., Wang, J., Sanders, S.T., Baer, D.S., and Hanson, R.K. 2000. In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors. Proc. Combust. Inst., 28(1), 407–413.
  • Woiki, D., Votsmeier, M., Davidson, D.F., Hanson, R.K., and Bowman, C.T. 1998. CH-radical concentration measurements in fuel-rich CH4/O2/Ar and CH4/O2/NO/Ar mixtures behind shock waves. Combust. Flame, 113(4), 624–626.
  • Wu, Q., Wang, F., Li, M., Yan, J., and Cen, K. 2017. Simultaneous in-situ measurement of soot volume fraction, H2O concentration, and temperature in an ethylene/air premixed flame using tunable diode laser absorption spectroscopy. Combust. Sci. Technol., 189, 1571–1590.
  • Zhou, X., Liu, X., Jeffries, J.B., and Hanson, R.K. 2003. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol., 14(8), 1459–1468.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.