359
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Non-linear Interactions of Two Premixed Flames Explored by Large Eddy Simulation with External Acoustic Forcing

&
Pages 425-436 | Received 06 Jun 2017, Accepted 25 Oct 2017, Published online: 17 Nov 2017

References

  • Abou-Taouk, A., Farcy, B., Domingo, P., Vervisch, L., Sadasivuni, S., and Eriksson, L.-E. 2016. Optimized reduced chemistry and molecular transport for large eddy simulation of partially premixed combustion in a gas turbine. Combust. Sci. Technol., 188, 21–39.
  • Abou-Taouk, A., Sadasivuni, S., Lorstad, D., and Eriksson, L.-E. 2013. Evaluation of global mechanisms for LES analysis of SGT-100 DLE combustion system. Paper No. GT2013-95454. Presented at the ASME Turbo Expo, San Antonio, Texas, June 3–7.
  • Balachandran, R., Ayoola, B.O., Kaminski, C.F., Dowling, A.P., and Mastorakos, E. 2005. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame, 143, 37–55.
  • Bauerheim, M., Staffelbach, G., Worth, N.A., Dawson, J.R., Gicquel, L.Y.M., and Poinsot, T. 2015. Sensitivity of LES-based harmonic flame response model for turbulent swirled flames and impact on the stability of azimuthal modes. Proc. Combust. Inst., 35, 3355–3363.
  • Bourgouin, J.F., Durox, D., Moeck, J.P., Schuller, T., and Candel, S. 2015. A new pattern of instability observed in an annular combustor: The slanted mode. Proc. Combust. Inst., 35, 3237–3244.
  • Bourgouin, J.F., Durox, D., Schuller, T., Beaunier, J., and Candel, S. 2013. Ignition dynamics of an annular combustor equipped with multiple swirling injectors. Combust. Flame, 160, 1398–1413.
  • Candel, S., Durox, D., Schuller, T., Bourgouin, J.F., and Moeck, J.P. 2014. Dynamics of swirling flames. Annu. Rev. Fluid Mech., 46, 147–173.
  • Crocco, L. 1951. Aspects of combustion stability in liquid propellant rocket motors. Part I: Fundamentals. Low frequency instability with monopropellants. J. Am. Rocket Soc., 21, 163–178.
  • Dawson, J.R., and Worth, N.A. 2014. Flame dynamics and unsteady heat release rate of self-excited azimuthal modes in an annular combustor. Combust. Flame, 161, 2565–2578.
  • Dowling, A.P., and Stow, S.R. 2003. Acoustic analysis of gas turbine combustors. J. Propul. Power, 19, 751–763.
  • Emmert, T., Bomberg, S., and Polifke, W. 2015. Intrinsic thermoacoustic instability of premixed flames. Combust. Flame, 162, 75–85.
  • Euler, M., Zhou, R., Hochgreb, S., and Dreizler, A. 2014. Temperature measurements of the bluff body surface of a swirl burner using phosphor thermometry. Combust. Flame, 161, 2842–2848.
  • Franzelli, B., Riber, E., Gicquel, L.Y.M., and Poinsot, T. 2012. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame, 159, 621–637.
  • Fureby, C. 2012. A comparative study of flamelet and finite rate chemistry LES for a swirl stabilized flame. J. Eng. Gas Turbines Power, 134, 041503.
  • Gicquel, L.Y.M., Staffelbach, G., and Poinsot, T. 2012. Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci., 38, 782–817.
  • Guiberti, T.F., Durox, D., Scouflaire, P., and Schuller, T. 2015. Impact of heat loss and hydrogen enrichment on the shape of confined swirling flames. Proc. Combust. Inst., 35, 1385–1392.
  • Han, X., Li, J., and Morgans, A.S. 2015. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model. Combust. Flame, 162, 3632–3647.
  • Han, X., and Morgans, A.S. 2015. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver. Combust. Flame, 162, 1778–1792.
  • Han, X., Yang, J., and Mao, J. 2016. LES investigation of two frequency effects on acoustically forced premixed flame. Fuel, 185, 449–459.
  • Krediet, H.J., Beck, C.H., Krebs, W., and Kok, J.B.W. 2013. Saturation mechanism of the heat release response of a premixed swirl flame using LES. Proc. Combust. Inst., 34, 1223–1230.
  • Lieuwen, T. 2003. Modeling premixed combustion-acoustic wave interactions: A review. J. Propul. Power, 19, 765–781.
  • Lieuwen, T.C. 2012. Unsteady Combustor Physics, Cambridge University Press, New York.
  • Morgans, A.S., and Stow, S.R. 2007. Model-based control of combustion instabilities in annular combustors. Combust. Flame, 150, 380–399.
  • Noiray, N., Durox, D., Schuller, T., and Candel, S. 2008. A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech., 615, 139–167.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, 2nd ed., R.T. Edwards, Philadelphia, PA.
  • Silva, C.F., Nicoud, F., Schuller, T., Durox, D., and Candel, S. 2013. Combining a Helmholtz solver with the flame describing function to assess combustion instability in a premixed swirled combustor. Combust. Flame, 160, 1743–1754.
  • Sirignano, W.A. 2015. Driving mechanisms for combustion instability. Combust. Sci. Technol., 187, 162–205.
  • Stow, S.R., and Dowling, A.P. 2009. A time-domain network model for nonlinear thermoacoustic oscillations. J. Eng. Gas Turbines Power, 131, 031502.
  • Tay-Wo-Chong, L., and Polifke, W. 2013. Large eddy simulation-based study of the influence of thermal boundary condition and combustor confinement on premix flame transfer functions. J. Eng. Gas Turbines Power, 135, 021502.
  • Worth, N.A., and Dawson, J.R. 2012. Cinematographic OH-PLIF measurements of two interacting turbulent premixed flames with and without acoustic forcing. Combust. Flame, 159, 1109–1126.
  • Worth, N.A., and Dawson, J.R. 2013. Self-excited circumferential instabilities in a model annular gas turbine combustor: Global flame dynamics. Proc. Combust. Inst., 34, 3127–3134.
  • Yoshizawa, A., and Horiuti, K. 1985. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn., 54, 2834–2839.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.