277
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Influence of the Lewis Number on Effective Strain Rates in Weakly Turbulent Premixed Combustion

, ORCID Icon, &
Pages 591-614 | Received 11 May 2017, Accepted 26 Oct 2017, Published online: 30 Nov 2017

References

  • Abdel-Gayed, R.G., Bradley, D., Hamid, M., and Lawes, M. 1984. Lewis number effects on turbulent burning velocity. Proc. Combust. Inst., 20, 505.
  • Allauddin, U., Pfitzner, M., Klein, M., and Chakraborty, N. 2017. A-priori and a-posteriori analysis of algebraic flame surface density modelling in the context of large eddy simulation of turbulent premixed combustion. Numer. Heat Trans. A, 71, 153.
  • Ashurst, W.T., Peters, N., and Smooke, M.D. 1988. Numerical simulation of turbulent flame structure with non-unity Lewis number. Combust. Sci. Technol., 53, 339.
  • Aspden, A.J., Bell, J.B., Day, M.S., and Egolfopoulos, F. 2017. Turbulence-flame interactions in lean premixed dodecane flames. Proc. Combust. Inst., 36, 2005.
  • Aspden, A.J., Day, M.S., and Bell, J.B. 2011. Turbulence–flame interactions in lean premixed hydrogen: Transition to the distributed burning regime. J. Fluid Mech., 690, 287.
  • Aspden, A.J., Day, M.S., and Bell, J.B. 2015. Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst., 35, 1321.
  • Boger, M., Veynante, D., Boughanem, H., and Trouvé, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst., 27, 917.
  • Butz, D., Gao, Y., Kempf, A.M., and Chakraborty, N. 2015. Large eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame, 162, 3180.
  • Candel, S.M., and Poinsot, T.J. 1990. Flame stretch and the balance equation for the flame area. Combust. Sci. Technol., 70, 1.
  • Carlsson, H., Yu, R., and Bai, X.-S. 2014. Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers. Int. J. Hydrogen Energy, 39, 20216.
  • Chakraborty, N., and Cant, R.S. 2005a. Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids, 17, 65108.
  • Chakraborty, N., and Cant, R.S. 2005b. Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids, 17, 105105.
  • Chakraborty, N., and Cant, R.S. 2009. Effects of Lewis number on scalar transport in turbulent premixed flames. Phys. Fluids, 21, 035110.
  • Chakraborty, N., and Cant, R.S. 2011. Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame, 158, 1768.
  • Chakraborty, N., Hawkes, E.R., Chen, J.H., and Cant, R.S. 2008. Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4-air and H2-air flames: A comparative study. Combust. Flame, 154, 259.
  • Chakraborty, N., Katragadda, M., and Cant, R.S. 2011. Effects of Lewis number on turbulent kinetic energy transport in turbulent premixed combustion. Phys. Fluids, 23, 075109.
  • Chakraborty, N., and Klein, M. 2008. Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids, 20, 065102.
  • Chakraborty, N., Klein, M., and Swaminathan, N. 2009. Effects of Lewis number on reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst., 32, 1409.
  • Chakraborty, N., Konstantinou, I., and Lipatnikov, A. 2016. Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames. Phys. Fluids, 28, 015109.
  • Chakraborty, N., and Lipatnikov, A.N. 2013. Effects of Lewis number on the statistics of conditional fluid velocity in turbulent premixed combustion in the context of Reynolds averaged Navier Stokes simulations. Phys. Fluids, 25, 045101.
  • Chakraborty, N., and Swaminathan, N. 2007. Influence of Damköhler number on turbulence-scalar interaction in premixed flames, Part I: Physical insight. Phys. Fluids, 19, 045103.
  • Chakraborty, N., and Swaminathan, N. 2010. Effects of Lewis number on scalar dissipation transport and its modelling implications for turbulent premixed combustion. Combust. Sci. Technol., 182, 1201.
  • Chakraborty, N., Wang, L., and Klein, M. 2014. Effects of Lewis number on streamline segment analysis of turbulent premixed flames. Phys. Rev. E, 89, 033015.
  • Chen, Y.-C., and Bilger, R.W. 2002. Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion—I: Hydrocarbon/air Bunsen flames. Combust. Flame, 131, 400.
  • Chen, Y.-C., and Monsour, M.S. 1998. Investigation of flame broadening in turbulent premixed flames in the thin reaction-zones. Proc. Combust. Inst., 27, 811.
  • Chung, S.H., and Law, C.K. 1984. An invariant derivation of flame stretch. Combust. Flame, 55, 123–125.
  • Cifuentes, L., Dopazo, C., Martin, J., Domingo, P., and Vervisch, L. 2015. Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame. Proc. Combust. Inst., 35, 1295.
  • Cifuentes, L., Dopazo, C., Martin, J., and Jimenez, C. 2014. Local flow topologies and scalar structures in a turbulent premixed flame. Phys. Fluids, 26, 065108.
  • Clavin, P., and Williams, F.A. 1982. Effects of molecular diffusion and thermal expansion on the structure and dynamics of turbulent premixed flames in turbulent flows of large scale and small intensity. J. Fluid Mech., 128, 251.
  • Dinkelacker, F., Manickam, B., and Mupppala, S.R. 2011. Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame, 158, 1742.
  • Dopazo, C., and Cifuentes, L. 2016. The physics of scalar gradients in turbulent premixed combustion and its relevance to modelling. Combust. Sci. Technol., 188, 1376.
  • Dopazo, C., Cifuentes, L., Hierro, J., and Martin, J. 2015a. Micro-scale mixing in turbulent constant density reacting flows and premixed combustion. Flow Turbul. Combust., 96, 547.
  • Dopazo, C., Cifuentes, L., Martin, J., and Jimenez, C. 2015b. Strain rates normal to approaching isoscalar surfaces in a turbulent premixed flame. Combust. Flame, 162, 1729.
  • Echekki, T., and Chen, J.H. 1999. Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame, 118, 303.
  • Gao, Y., Chakraborty, N., and Klein, M. 2015. Assessment of the performances of sub-grid scalar flux models for premixed flames with different global Lewis numbers: A direct numerical simulation analysis. Int. J. Heat Fluid Flow, 52, 28.
  • Gao, Y., Chakraborty, N., Swaminathan, N. 2014. Algebraic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion. Combust. Sci. Technol., 186, 1309.
  • Han, I., and Huh, K. 2008. Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame, 152, 194–205.
  • Hawkes, E.R., and Chen, J.H. 2006. Comparison of direct numerical simulation of lean premixed methane–air flames with strained laminar flame calculations. Combust. Flame, 144, 112.
  • Haworth, D.C., and Poinsot, T.J. 1992. Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech., 244, 405.
  • Jenkins, K.W., and Cant, R.S. 1999. DNS of turbulent flame kernels. In L. Sakell and T. Beautner (Eds.), Proceedings of the Second AFOSR Conference on DNS and LES, Kluwer Academic, Dordrecht, Netherlands, pp. 192–202.
  • Katragadda, M., and Chakraborty, N. 2012. A-priori direct numerical simulation modelling of the curvature term of the flame surface density transport equation for non-unity Lewis number flames in the context of large eddy simulations. Int. J. Chem Eng., 2012, 103727.
  • Katragadda, M., Chakraborty, N., and Cant, R.S. 2012. A-priori DNS assessment of wrinkling factor based algebraic flame surface density models in the context of large eddy simulations for non-unity Lewis number flames in the thin reaction zones regime. J. Combust., 794671.
  • Kim, S.H., and Pitsch, H. 2007. Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluid, 19, 115104.
  • Klein, M., Chakraborty, N., and Pfitzner, M. 2016. Analysis of the combined modelling of subgrid transport and filtered flame propagation for premixed turbulent combustion. Flow Turbul. Combust., 96, 921.
  • Kobayashi, H., Tamura, H., Maruta, K., Nikola, T., and Williams, F.A. 1996. Burning velocity of turbulent premixed flames in a high-pressure environment. Proc. Combust. Inst., 26, 389.
  • Kollmann, W., and Chen, J.H. 1998. Pocket formation and the flame surface density equation. Proc. Combust. Inst., 27, 927.
  • Langella, I., Swaminathan, N., Gao, Y., and Chakraborty, N. 2017. LES of premixed combustion using an algebraic closure involving scalar dissipation rate. Combust. Sci. Technol., 189, 43.
  • Lapointe, S., Savard, B., and Blanquart, G. 2015. Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames. Combust. Flame, 162, 3341.
  • Law, C.K., and Kwon, O.C. 2004. Effects of hydrocarbon substitution on atmospheric hydrogen–air flame propagation. Int. J. Hydrogen Energy, 29, 867.
  • Ma, T., Gao, Y., Kempf, A., and Chakraborty, N. 2014. Validation and implementation of algebraic LES modelling of scalar dissipation rate for reaction rate closure in turbulent premixed combustion. Combust. Flame, 161, 3134.
  • Ma, T., Stein, O., Chakraborty, N., and Kempf, A. 2013. A-posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model., 17, 431.
  • Moureau, V., Domingo, P., and Vervisch, L. 2011. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modelling. Combust. Flame, 158, 1340.
  • Muppala, S.P.R., Aluri, N.K., Dinkelacker, F., and Leipertz, A. 2005. Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa. Combust. Flame, 140, 257–266.
  • O’Young, F., and Bilger, R.W. 1997. Scalar gradient and related quantities in turbulent premixed flames. Combust. Flame, 109, 683.
  • Pera, C., Chevillard, S., and Reveillon, J. 2013. Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame, 160, 1020.
  • Peters, N. 2000. Turbulent Combustion, Cambridge Monograph on Mechanics, Cambridge University Press, Cambridge, UK.
  • Peters, N., Terhoeven, P., Chen, J.H., and Echekki, T. 1998. Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst., 27, 833.
  • Poinsot, T., and Lele, S.K. 1992. Boundary conditions for direct simulation of compressible viscous flows. J. Comput. Phys., 101, 104.
  • Poinsot, T., and Veynante, D. 2001. Theoretical and Numerical Combustion, R.T. Edwards Inc., Philadelphia, PA.
  • Pope, S.B. 1988. The evolution of surfaces in turbulence. Int. J. Eng. Sci., 26, 445.
  • Rogallo, R.S. 1981. Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315. NASA Ames Research Center, Mountain View, CA.
  • Rutland, C., and Trouvé, A. 1993. Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame, 94, 41.
  • Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., and Law, C.K. 2007. Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proc. Combust. Inst., 31, 1291.
  • Savard, B., and Blanquart, G. 2015. Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame, 162, 2020.
  • Sivashinsky, G.I. 1977. Diffusional-thermal theory of cellular flames. Combust. Sci. Technol., 16, 137.
  • Soika, A., Dinkelacker, F., and Leipertz, A. 1998. Measurement of resolved flame structure with constant Reynolds number. Proc. Combust. Inst., 27, 785.
  • Trouvé, A., and Poinsot, T. 1994. The evolution equation for flame surface density in turbulent premixed combustion. J. Fluid Mech., 278, 1.
  • Vervisch, L., Bidaux, E., Bray, K.N.C., and Kollmann, W. 1995. Surface density function in premixed turbulent combustion modelling, similarities between probability density function and flame surface approaches. Phys. Fluids A, 7, 2496.
  • Veynante, D., and Vervisch, L. 2002. Turbulent combustion modelling. Prog. Energy Combust. Sci., 28, 193.
  • Wray, A.A. 1990. Minimal storage time advancement schemes for spectral methods. Unpublished report. NASA Ames Research Center, Mountain View, CA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.