350
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Turbulence on Ignition of Methane–Air and n-Heptane–Air Fully Premixed Mixtures

, , ORCID Icon, &
Pages 452-470 | Received 12 Apr 2017, Accepted 28 Oct 2017, Published online: 29 Nov 2017

References

  • Ahmed, I., and Swaminathan, N. 2013. Simulation of spherically expanding turbulent premixed flames. Combust. Sci. Technol., 185, 1509–1540.
  • Ahmed, I., and Swaminathan, N. 2014. Simulation of turbulent explosion of hydrogene-air mixtures. Int. J. Hydrogen Energy, 39, 9562–9572.
  • Aoki, K., Shimura, M., Naka, Y., and Tanahashi, M. 2017. Disturbance energy budget of turbulent swirling premixed flame in a cuboid combustor. Proc. Combust. Inst., 36, 3809–3816.
  • Baum, M., Poinsot, T., and Thevenin, D. 1995. Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys., 116(2), 247–261.
  • Brown, P., Byrne, G., and Hindmarsh, A. 1989. Vode: A variable-coefficient ode solver. SIAM J. Sci. Stat. Comput., 10(5), 1038–1051.
  • Cavaliere, A., and Joannon, M. 2004. Mild combustion. Prog. Energy Combust. Sci., 30(4), 329–366.
  • Chaudhuri, S., Wu, F., and Law, C.K. 2013. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations. Phys. Rev. E, 88, 033005.
  • Chen, Z., Burke, M.P. and Ju, Y. 2011. On the critical flame radius and minimum ignition energy for spherical flame initiation. Proc. Combust. Inst., 33(1), 1219–1226.
  • Dec, J.E., Hwang, W., and Sjöberg, M. 2006. An investigation of thermal stratification in HCCI engines using chemiluminescence imaging. SAE Technical Paper 2006–01–1518.
  • Fuerhapter, A., Piock, W.F., and Fraidl, G.K. 2003. CSI—controlled auto ignition—the best solution for the fuel consumption – versus emission trade-off? SAE Technical Paper 2003–01–0754.
  • Gou, X., Sun, W., Chen, Z., and Ju, Y. 2010. A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combust. Flame, 157(6), 1111–1121.
  • Han, J., and Yamashita, H. 2014. Numerical study of the effects of non-equilibrium plasma on the ignition delay of a methane-air mixture using detailed ion chemical kinetics. Combust. Flame, 161(8), 2064–2072.
  • Han, J., Yamashita, H., and Hayashi, N. 2010. Numerical study on the spark ignition characteristics of a methane-air mixture using detailed chemical kinetics: Effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay. Combust. Flame, 157(7), 1414–1421.
  • Hwang, W., Dec, J.E., and Sjöberg, M. 2007. Fuel stratification for low-load HCCI combustion: Performance and fuel-PLIF measurements. SAE Technical Paper 2007–01–4130.
  • Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E. and Miller, J.A. 1986. A fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Report No. SAND86–8246, Sandia National Laboratories.
  • Kee, R.J., Rupley, F.M. and Miller, J.A. 1989. A fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Report No. SAND89–8009B, Sandia National Laboratories.
  • Kravchik, T., and Sher, E. 1994. Numerical modeling of spark ignition and flame initiation in a quiescent methane-air mixture. Combust. Flame, 99(3–4), 635–643.
  • Law, C.K., and Sung, C.J. 2000. Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci., 26(4–6), 459–505.
  • Lele, S.K. 1992. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103(1), 16–42.
  • Leonov, S.B., Yarantsev, D.A., Napartovich, A.P., and Kochetov, I.V. 2006. Plasma-assisted combustion of gaseous fuel in supersonic duct. IEEE Trans. Plasma Sci., 34(6), 2514–2525.
  • Leonov, S.B., Yarantsev, D.A., Napartovich, A.P. and Kochetov, I.V. 2007. Plasma-assisted chemistry in high-speed flow. Plasma Sci. Technol., 9(6), 760.
  • Lewis, B., and Von Elbe, G. 1987. Combustion, Flames, and Explosions of Gases, Academic Press.
  • Loeb, L.B. 1939. Fundamental Processes of Electrical Discharge in Gases, John Wiley and Sons.
  • Lutz, A.E., Kee, R.J., and Miller, J.A. 1988. Senkin: A fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Report No. SAND87–8248, Sandia National Laboratories.
  • Maroteaux, F., and Noel, L. 2006. Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling. Combust. Flame, 146(1–2), 246– 267.
  • Mastorakos, E. 2009. Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci., 35(1), 57–97.
  • Minamoto, Y., Aoki, K., Tanahashi, M., and Swaminathan, N. 2015. DNS of swirling hydrogen-air premixed flames. Int. J. Hydrogen Energy, 40(39), 13604–13620.
  • Minamoto, Y., Fukushima, N., Tanahashi, M., Miyauchi, T., Dunstan, T.D., and Swaminathan, N. 2011. Effect of flow-geometry on turbulence-scalar interaction in premixed flames. Phys. Fluids, 23(12), 125–107.
  • Miyauchi, T., Tanahashi, M., and Gao, F. 1994. Translated from nensho no kagaku to gijutsu, 1, 29 (1992). Fractal characteristics of turbulent diffusion flames. Combust. Sci. Technol., 96, 135–154.
  • Miyauchi, T., Tanahashi, M., Shimura, M., Taka, S., and Matsuura, S. 2007. In Laser diagnostics and DNS of turbulent premixed flames, Proceedings of Turbulence and Shear Flow Phenomena — 5, pp. 973–982. Begell House: Danbury, Connecticut, US. ISBN 1-56700-135-1
  • Peng, M.W., Shy, S.S., Shiu, Y.W., and Liu, C.C. 2013. High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion. Combust. Flame, 160(9), 1755–1766.
  • Persson, H., Hultqvist, A., Johansson, B., and Remón, A. 2007. Investigation of the early flame development in spark assisted HCCI combustion using high speed chemiluminescence imaging. SAE Technical Paper 2007–01–0212.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Poinsot, T.J., and Lele, S.K. 1992. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101(1), 104–129.
  • Shimura, M., Yamawaki, K., Fukushima, N., Shim, Y.S., Nada, Y., Tanahashi, M., and Miyauchi, T. 2012. Flame and eddy structures in hydrogen-air turbulent jet premixed flame. J. Turbul., 13, N42.
  • Shy, S.S., Liu, C.C., Lin, J.Y., Chen, L.L., Lipatnikov, A.N., and Yang, S.I. 2015. Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers. Proc. Combust. Inst., 35(2), 1509–1516.
  • Shy, S.S., Liu, C.C., and Shih, W.T. 2010. Ignition transition in turbulent premixed combustion. Combust. Flame, 157(2), 341–350.
  • Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner, W., Lissianski, V., and Qin, Z. 1999. GRI-Mech 3.0. Available at http://www.me.berkeley.edu/gri_mech/.
  • Starikovskaia, S.M. 2006. Plasma assisted ignition and combustion. J. Phys. D, 39(16), R265.
  • Starikovskii, A.Yu. 2005. Plasma supported combustion. Proc. Combust. Inst., 30(2), 2405–2417.
  • Sun, W., Gou, X., El-Asrag, H.A., Chen, Z., and Ju, Y. 2015. Multi-timescale and correlated dynamic adaptive chemistry modeling of ignition and flame propagation using a real jet fuel surrogate model. Combust. Flame, 162(4), 1530–1539.
  • Sun, W., and Ju, Y. 2015. Multi-timescale and correlated dynamic adaptive chemistry and transport modeling of flames in n-heptane/air mixtures. Paper No. 1382. Pressented at the 53rd AIAA Aerospace Sciences Meeting, 5–9 January 2015, Kissimmee, Florida, USA.
  • Swaminathan, N., and Bray, K.N.C. 2011. Turbulent Premixed Flames, Cambridge University Press, Cambridge, UK.
  • Tanahashi, M., Fujimura, M., and Miyauchi, T. 2000. Coherent fine-scale eddies in turbulent premixed flames. Proc. Combust. Inst., 28(1), 529–535.
  • Tanahashi, M., Nada, Y., Fujimura, M., and Miyauchi, T. 1999. Fine scale structure of H2-air turbulent premixed flames. In Proceedings of Turbulence and Shear Flow Phenomena—1, pp. 59–64. Begell House: Danbury, Connecticut, US. ISBN 1-56700-135-1
  • Tanahashi, M., Sato, M., Shimura, M., and Miyauchi, T. 2008. DNS and combined laser diagnostics of turbulent combustion. J. Therm. Sci. Technol., 3(3), 391–409.
  • Yang, S., Ranjan, R., Yang, V., Menon, S., and Sun, W. 2017. Parallel on-the-fly adaptive kinetics in direct numerical simulation of turbulent premixed flame. Proc. Combust. Inst., 36, 2025–2032.
  • Yenerdag, B., Fukushima, N., Shimura, M., Tanahashi, M., and Miyauchi, T. 2015. Turbulence-flame interaction and fractal characteristics of H2-air premixed flame under pressure rising condition. Proc. Combust. Inst., 35, 1277–1285.
  • Yenerdag, B., Minamoto, Y., Naka, Y., Shimura, M., and Tanahashi, M. 2016. Flame propagation and heat transfer characteristics of a hydrogen-air premixed flame in a constant volume vessel. Int. J. Hydrogen Energy, 41(22), 9679–9689.
  • Yuasa, T., Kadota, S., Tsue, M., Kono, M., Nomura, H., and Ujiie, Y. 2002. Effects of energy deposition schedule on minimum ignition energy in spark ignition of methane/air mixtures. Proc. Combust. Inst., 29(1), 743–750.
  • Zhao, F., Asmus, T.W., Assanis, D.N., Dec, J.E., Eng, J.A., and Najt, P.M. 2003. Homogeneous charge compression ignition HCCI engines. SAE Technical Paper, PT–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.