277
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

The Conditions and Characteristics of Wood Particles Ignition in the Stream of the High Temperature Gases

ORCID Icon, , , &
Pages 663-686 | Received 19 Apr 2017, Accepted 10 Nov 2017, Published online: 21 Dec 2017

References

  • Antwi-Boasiako, C., and Acheampong, B.B. 2016. Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass Bioenergy, 85, 144–152.
  • Blijderveen, M.V., Bramer, E.A., and Brem, G. 2012. Modelling piloted ignition of wood and plastics. Waste Manage., 32, 1659–1668.
  • Blijderveen, M.V., Bramer, E.A., and Brem, G. 2013. Modelling spontaneous ignition of wood, char and RDF in a lab-scale packed bed. Fuel, 108, 190–196.
  • Boonstra, R., Krebs, C.J., and Cowcill, K. 2017. Responses of key understory plants in the boreal forests of western North America to natural versus anthropogenic nitrogen levels. For. Ecol. Manage., 401, 45–54.
  • Bozzano, G., and Manenti, F. 2016. Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Prog. Energy Combust. Sci., 56, 71–105.
  • Caneghem, J.V., Brems, A., Lievens, P., Block, C., Billen, P., Vermeulen, I., Dewil, R., Baeyens, J., and Vandecasteele, C. 2012. Fluidized bed waste incinerators: Design, operational and environmental issues. Prog. Energy Combust. Sci., 38, 551–582.
  • Coniglio, L., Coutinho, J.A.P., Clavier, J.-Y., Jolibert, F., Jose, J., Mokbel, I., Pillot, D., Pons, M.-N., Sergent, M., and Tschamber, V. 2014. Biodiesel via supercritical ethanolysis within a global analysis “feedstocks-conversion-engine” for a sustainable fuel alternative. Prog. Energy Combust. Sci., 43, 1–35.
  • DiDomizio, M.J., Mulherin, P., and Weckman, E.J. 2016. Ignition of wood under time-varying radiant exposures. Fire Saf. J., 82, 131–144.
  • Emaminasab, M., Tarmian, A., and Pourtahmasi, K. 2015. Permeability of poplar normal wood and tension wood bioincised by Physisporinus vitreus and Xylaria longipes. Int. Biodeterior. Biodegrad., 105, 178–184.
  • Gernandt, D.S., and Liston, A. 1999. International transcribed spacer region evolution in Larix and Pseudotsuga, Am. J. Botany, 86, 711–723.
  • Haschenko, A.A., Vecher, O.V., and Diskaeva, E.I. 2016. A study of temperature dependence of evaporation rate of liquids from a free surface and liquid boiling rate on a solid heating surface. Izvestiya of Altai State University.
  • Heidenreich, S., and Foscolo, P.U. 2015. New concepts in biomass gasification. Prog. Energy Combust. Sci., 46, 72–95.
  • Ηertz, Η. 1882. Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann. Phys., 17, 177.
  • Huang, Y.W., Chen, M.Q., Li, Y., and Guo, J. 2016. Modeling of chemical exergy of agricultural biomass using improved general regression neural network. Energy, 114, 1164–1175.
  • Huang, Z., and Qin, G. Gao. 1986. Theoretical analysis on CWM drop combustion history. Presented at the Proceedings of the 8th International Symposium on Coal Slurry Fuels Preparation and Utilization, Orlando, FL.
  • Kakeu, J., and Bouaddi, M. 2015. Empirical evidence of news about future prospects in the risk-pricing of oil assets. Energy Econ, 64, 458–468.
  • Kanbayashi, T., and Miyafuj, H. 2016. Microscopic characterization of tension wood cell walls of Japanese beech (Fagus crenata) treated with ionic liquids. Micron., 88, 24–29.
  • Kangas, H.-L., Lintunen, J., Pohjola, J., Hetemäki, L., and Uusivuori, J. 2011. Investments into forest biorefineries under different price and policy structures. Energy Econ., 33, 1165–1176. DOI: 10.1016/j.eneco.2011.04.008.
  • Klason, T., and Bai, X.S. 2007. Computational study of the combustion process and NO formation in a small-scale wood pellet furnace. Fuel, 86, 1465–1474.
  • Κnudsen, Μ. 1916. Maximum rate of vaporization of mercury. Ann. Phys., 50, 472.
  • Konig, A. 2011. Cost efficient utilization of biomass in the German energy system in the context of energy and environmental policies. Energy Policy, 39, 628–636.
  • Kuznetsov, G.V., Mamontov, G.Ya., and Taratushkina, G.V. 2004. Numerical simulation of ignition of a condensed substance by a particle heated to high temperatures. Combust. Explos. Shock Waves, 40, 70–76.
  • Kuznetsov, G.V., and Strizhak, P.A. 2008. Heat and mass transfer at the ignition of a liquid substance by a single “hot” particle. J. Eng. Thermophys., 3, 244–252.
  • Kuznetsov, G.V., and Strizhak, P.A. 2009. 3D problem of heat and mass transfer at ignition of a combustible liquid by a heated metal particle. J. Eng. Thermophys., 18, 72–79.
  • Lagüela, S., Bison, P., Peron, F., and Romagnoni, P. 2015. Thermal conductivity measurements on wood materials with transient plane source technique. Thermochim. Acta, 600, 45–51.
  • Langmuir, I. 1916. The Vapor Pressure of Metallic Tungsten Phys. Z.., 14, 1273 (1913).
  • Lauri, P., Havlík, P., Kindermann, G., Forsell, N., Böttcher, H., and Obersteiner, M. 2014. Woody biomass energy potential in 2050. Energy Policy, 66, 19–31.
  • Mantau, U. 2015. Wood flow analysis: Quantification of resource potentials, cascades and carbon effects. Biomass Bioenergy, 79, 28–38.
  • Mantau, U., Saal, U., Prins, K., Steierer, F., Lindner, M., and Verkerk, H. 2010. Real potential for changes in growth and use of EU forests and EU wood. Final report. University of Hamburg Centre of Wood Science, Hamburg (DE).
  • Mantzaras, J. 2008. Catalytic combustion of syngas. Combust. Sci. Technol., 180, 1137–1168.
  • McAllister, S. 2013. Critical mass flux for flaming ignition of wet wood. Fire Saf. J., 61, 200–206.
  • McGlade, C.E. 2012. A review of the uncertainties in estimates of global oil resources. Energy, 47, 262–270.
  • McGlade, C.E., Speirs, J., and Sorrell, S. 2011. A review of regional and global estimates of unconventional gas resources. Report to the Energy Security Unit of the Joint Research Centre of the European Commission, London, UK.
  • Nunes, L.J.R., Matias, J.C.O., and Catalao, J.P.S. 2016. Wood pellets as a sustainable energy alternative in Portugal. Renewable Energy, 85, 1011–1016.
  • Park, H.-J., Dong, J.-I., Jeon, J.-K., Park, Y.-K., Yoo, K.-S., Kim, S.-S., Kim, J., and Kim, S. 2008. Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chem. Eng. J., 143, 124–132.
  • Purahong, W., Arnstadt, T., Kahl, T., Bauhus, J., Kellner, H., Hofrichter, M., Krüger, D., Buscot, F., and Hoppe, B. 2016. Are correlations between deadwood fungal community structure, wood physico-chemical properties and lignin-modifying enzymes stable across different geographical regions. Fungal Ecol., 22, 98–105.
  • Reichert, J.M., Rodrigues, M.F., Bervald, C.M.P., Brunetto, G., Kato, O.R., and Schumacher, M.V. 2015. Fragmentation, fiber separation, decomposition, and nutrient release of secondary-forest biomass, mechanically chopped-and-mulched, and cassava production in the Amazon. Agr. Ecosyst. Environ., 204, 8–16.
  • Roache, P.J. 1976. Computational Fluid Dynamics, Hermosa, Albuquerque, NM.
  • Rollinson, A.N., and Karmakar, M.K. 2015. On the reactivity of various biomass species with CO2 using a standardised methodology for fixed-bed gasification. Chem. Eng. Sci., 128, 82–91.
  • Salomatov, V.V., Kuznetsov, G.V., Syrodoy, S.V., and Gutareva, N.Y. 2016. Ignition of coal-water fuel particles under the conditions of intense heat. Appl. Therm. Eng., 106, 561–569.
  • Salomatov, V.V., Syrodoy, S.V., and Gutareva, N.Y. 2014. Concentration organic components in the hydrocarbon fuel particles conditions and characteristic of ignition. EPJ Web Conf., 76, 01018.
  • Samarskii, A.A. 1962. Homogeneous difference schemes for non-linear parabolic equations. J. Vychisl. Mat. Mat. Fiz., 2, 25–56.
  • Samarskii, A.A. 1963. Local one dimensional difference schemes on non-uniform nets. J. USSR Comput. Math. Math. Phys., 3, 572–619.
  • Samarskii, A.A., and Moiseenko, B.D. 1965. An economic continuous calculation scheme for the Stefan multidimensional problem. J. Vychisl. Mat. Mat. Fiz., 5, 816–827.
  • Sami, M., Annamalai, K., and Wooldridge, M. 2001. Co-firing of coal and biomass fuel blends. Prog. Energy Combust. Sci., 2, 171–214.
  • Shershnev, A.A. 1964. Pneumatic furnace CBTI Shershieva system boilers of low and medium power. Mashgiz, Moscow.
  • Sørensen H.D. 2009. Mechanical engineer at Avedøre CHP plant. Copenhagen, Denmark: 2009.
  • Strakhov, V.L., Garashchenko, A.N., Kuznetsov, G.V., and Rudzinskii, V.P. 2001. Mathematical simulation of thermophysical and thermochemical processes during combustion of intumescent fire-protective coatings. Combust. Explos. Shock Waves, 2, 178–186.
  • Syrodoy, S.V., Kuznetsov, G.V., Zhakharevicha, A.V., Gutareva, N.Y., and Salomatov, V.V. 2017. The influence of the structure heterogeneity on the characteristics and conditions of the coal–water fuel particles ignition in high temperature environment. Combust. Flame, 180, 196–206.
  • Umeki, K., Yamamoto, K., Namioka, T., and Yoshikawa, K. 2010. High temperature steam-only gasification of woody biomass. Appl. Energy, 87, 791–798.
  • Voytenko, Y., and Peck, P. 2012. Organizational frameworks for straw-based energy systems in Sweden and Denmark. Biomass Bioenergy, 38, 34–48.
  • Wang, C.J., Wen, J., Shou, L.X., and Jin, G. 2012. Single-step chemistry model and transport coefficient model for hydrogen combustion. Sci. China. Technol. Sci., 55, 2163–2168.
  • Watanabe, H., Ashizawa, M., Otaka, M., Hara, S., and Inumaru, A. 2002. Development on numerical simulation technology of heavy oil gasifier, CRIEPI report W01023 [in Japanese].
  • Wei, B., Wei, J.-B., Han, H.-Q., and Zhang, Y.-P. 1985. A study of the evaporation and ignition of a single coal-water slurry (CWS) droplet. Combust. Sci. Technol., 43, 67–83.
  • Weimar, H., Doring, P., Mantau, U., and Einsatz, von Holz. 2011. Biomasse-Grobfeuerungsanlagen (>1 MW). Final report. University of Hamburg Centre of Wood Science, Hamburg (DE).
  • Williams, A., Pourkashanian, M., and Jones, J.M. 2001. Combustion of pulverised coal and biomass. Prog. Energy Combust. Sci., 6(27), 587–610.
  • Yashwanth, B.L., Shotorban, B., Mahalingam, S., Lautenberger, C.W., and Weise, D.R. 2016. A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element. Combust. Flame, 163, 301–316.
  • Yin, C., Rosendahl, L.A., and Kar, S.K. 2008. Grate-firing of biomass for heat and power production. Prog. Energy Combust. Sci., 34, 725–754.
  • Zakharevich, A.V., Kuznetsov, V.T., Kuznetsov, G.V., and Maksimov, V.I. 2008. Ignition of model composite propellants by a single particle heated to high temperatures. Combust. Explos. Shock Waves, 5, 543–546.
  • Zakharevich, A.V., Kuznetsov, G.V., Salomatov, V.V., Strizhak, P.A., and Syrodoy, S.V. 2016. Initiation of combustion of coal particles coated with a water film in a high-temperature air flow. Combust. Explos. Shock Waves, 5, 550–561.
  • Zhang, X., Wang, T., Xu, J., Zheng, S., and Hou, X. Study on flame-vortex interaction in a spark ignition engine fueled with methane/carbon dioxide gases. J. Energy Inst. 1–12.
  • Zhou, Y.Y., Walther, D.C., and Fernandez-Pello, A.C. 2002. Numerical analysis of piloted ignition of polymeric materials. Combust. Flame, 1, 147–158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.