307
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and Computational Analysis of the Formation of Surface Oxygen Functional Groups during Iron Catalyzed Char Gasification with CO2

, &
Pages 687-706 | Received 07 Jun 2017, Accepted 13 Nov 2017, Published online: 12 Dec 2017

References

  • Ahmed, M.A., Blesa, M.J., Juan, R., and Vandenberghe, R.E. 2003. Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy. Fuel, 82, 1825–1829.
  • Ahmed, M.A., Blesa, M.J., and Miranda, J.L. 2010. Maria coal pyrolysis studied by Fourier transform infrared and Mössbauer spectroscopy. Energy Sources, 32(18), 1747–1755.
  • Ahmed, M.A., Blesa, M.J., and Moliner, R. 2007. Chemical decomposition of iron in Spanish coal pyrolysis identified by Mössbauer spectroscopy at different temperatures. Energy Sources, 29(16), 1443–1456.
  • Ahmed, M.A., Vandenberghe, R.E., De Grave, E., Eissa, N.A., and Ibarra, J.V. 1999. Characterization of Spanish coal by means of Mössbauer spectroscopy. Fuel, 78, 453–457.
  • Asami, K., Sears, P., Furimsky, E., and Ohtsuka, Y. 1996. Gasification of brown coal and char with carbon dioxide in the presence of finely dispersed iron catalysts. Fuel Process. Technol., 47, 139–151.
  • Bandyopadhyay, D. 2005. Study of kinetics of iron minerals in coal by 57Fe Mössbauer and FT-IR spectroscopy during natural burning. Hyperfine Interactions, 163(1–4), 167–176.
  • British Petroleum. 2015. BP Statistical Review of World Energy. British Petroleum Company: London, UK
  • Burns, R.G. 1994. Mineral Mössbauer spectroscopy: Correlations between chemical shift and quadrupole splitting parameters. Hyperfine Interactions, 91(1), 739–745.
  • Calderón, L.A., Garza, J., and Espinal, J.F. 2015. Theoretical study of sodium effect on the gasification of carbonaceous materials with carbon dioxide. J. Phys. Chem. A, 119(51), 12756–12766.
  • Chen, N., and Yang, R.T. 1998. Ab initio molecular orbital study of the unified mechanism and pathways for gas-carbon reactions. J. Phys. Chem. A, 102, 6348–6356.
  • Corella, J., Toledo, J., and Molina, G. 2006. Steam gasification of coal at low−medium (600−800°C) temperature with simultaneous CO2 capture in fluidized bed at atmospheric pressure: The effect of inorganic species. 1. Literature review and comments. Ind. Eng. Chem. Res., 45, 6137–6146.
  • de Lecea, C.S.-M., Almela-Alarcón, M., and Linares-Solano, A. 1990. Calcium-catalysed carbon gasification in CO2 and steam. Fuel, 69(1), 21–27.
  • Domazetis, G., and James, B.D. 2006. Molecular models of brown coal containing inorganic species. Org. Geochem., 37(2), 244–259.
  • Domazetis, G., James, B.D., Liesegang, J., Raoarun, M., Kuiper, M., Potter, I.D., and Oehme, D. 2012. Experimental studies and molecular modelling of catalytic steam gasification of brown coal containing iron species. Fuel, 93, 404–414.
  • Domazetis, G., Liesegang, J., and James, B.D. 2005. Studies of inorganics added to low-rank coals for catalytic gasification. Fuel Process. Technol., 86(5), 463–486.
  • Domazetis, G., Raoarun, M., and James, B.D. 2007. Semiempirical and density functional theory molecular modeling of brown coal chars with iron species and H2, CO formation. Energy Fuels, 21, 2531–2542.
  • Domazetis, G., Raoarun, M., James, B.D., and Liesegang, J. 2008. Molecular modelling and experimental studies on steam gasification of low-rank coals catalysed by iron species. Appl. Catal. A: General, 340(1), 105–118.
  • Frankcombe, T.J., and Smith, S.C. 2004. On the microscopic mechanism of carbon gasification: A theoretical study. Carbon, 42(14), 2921–2928.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J. V., Cioslowski, J., and Fox, D.J. 2010. Gaussian 09, Revision B.01. Gaussian Inc.: Wallingford CT, USA.
  • Furimsky, E., and Sears, P. 1988. Iron-catalyzed gasification of char in CO2. Energy Fuels, 2(12), 634–639.
  • González, J.D., Mondragón, F., and Espinal, J.F. 2013. Effect of calcium on gasification of carbonaceous materials with CO2: A DFT study. Fuel, 114, 199–205.
  • Grigore, M., Sakurovs, R., French, D., and Sahajwalla, V. 2008. Mineral reactions during coke gasification with carbon dioxide. Int. J. Coal Geol., 75(4), 213–224.
  • Grigore, M., Sakurovs, R., French, D., and Sahajwalla, V. 2009. Coke gasification: The influence and behavior of inherent catalytic mineral matter. Energy Fuels, 23, 2075–2085.
  • Hampartsoumian, E., Murdoch, P.L., Pourkashanian, M., Trangmar, D.T., and Williams, A. 1993. The reactivity of coal chars gasified in a carbon dioxide environment. Combust. Sci. Technol., 92(1–3), 105–121.
  • Higman, C., and van der Burgt, M. 2003. Gasification, Elsevier Science, Burlington, MA.
  • Huang, Y., Yin, X., Wu, C., Wang, C., Xie, J., Zhou, Z., Ma, L., and Li, H. 2009. Effects of metal catalysts on CO2 gasification reactivity of biomass char. Biotechnol. Adv., 27(5), 568–572.
  • International Energy Agency. 2012. World Energy Outlook, International Energy Agency, Paris, France.
  • Irfan, M.F., Usman, M.R., and Kusakabe, K. 2011. Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review. Energy, 36(1), 12–40.
  • Kelemen, S. 1986. Model CO2 gasification reactions on uncatalyzed and potassium catalyzed glassy carbon surfaces. J. Catal., 102(1), 80–91.
  • Liu, H., Luo, C., Kato, S., Uemiya, S., Kaneko, M., and Kojima, T. 2006. Kinetics of CO2/char gasification at elevated temperatures. Part I: Experimental results. Fuel Process. Technol., 87(9), 775–781.
  • Liu, P., Lin, H., and Huang, Z. 2016. Theoretical insights into the mechanism of CO2 chemisorption and subsequent CO desorption on char surface with zigzag active sites. Combust. Sci. Technol., 188(7), 1136–1151.
  • Lizzio, A.A., Jiang, H., and Radovic, L.R. 1990. On the kinetics of carbon (char) gasification: Reconciling models with experiments. Carbon, 28(1), 7–19.
  • Lizzio, A.A., Piotrowski, A., and Radovic, L.R. 1988. Effect of oxygen chemisorption on char gasification reactivity profiles obtained by thermogravimetric analysis. Fuel, 67(12), 1691–1695.
  • López, I.C., and Ward, C.R. 2008. Composition and mode of occurrence of mineral matter in some Colombian coals. Int. J. Coal Geol., 73(1), 3–18.
  • Molina, A., and Mondragon, F. 1998. Reactivity of coal gasification with steam and CO2. Fuel, 77(15), 1831–1839.
  • Molina, A., Montoya, A., and Mondragon, F. 1999. CO2 strong chemisorption as an estimate of coal char gasification reactivity. Fuel, 78, 971–977.
  • Mondragon, F., Quintero, G., Jaramillo, A., Fernandez, J., and Hall, P.J. 1998. The catalytic liquefaction of coal in the presence of ethanol. Fuel Process. Technol., 53(3), 171–181.
  • Montoya, A., Mondragon, F., and Truong, T.N. 2002a. First-principles kinetics of CO desorption from oxygen species on carbonaceous surface. J. Phys. Chem. A, 106, 4236–4239.
  • Montoya, A., Mondragon, F., and Truong, T.N. 2002b. Adsorption on carbonaceous surfaces: Cost-effective computational strategies for quantum chemistry studies of aromatic systems. Carbon, 40, 1863–1872.
  • Montoya, A., Mondragón, F., and Truong, T.N. 2002c. Formation of CO precursors during char gasification with O2, CO2 and H2O. Fuel Process. Technol., 77–78(2), 125–130.
  • Montoya, A., Mondragon, F., and Truong, T.N. 2003. CO2 adsorption on carbonaceous surfaces: A combined experimental and theoretical study. Carbon, 41, 29–39.
  • Montoya, A., Truong, T.T., Mondragon, F., and Truong, T.N. 2001. CO desorption from oxygen species on carbonaceous surface: 1. Effects of the local structure of the active site and the surface coverage. J. Phys. Chem. A, 105, 6757–6764.
  • Mössbauer Effect Data Center. 2005. Mössbauer Mineral Handbook, Asheville, North Carolina.
  • Moulijn, J.A., and Freek, K. 1995. Towards a unified theory of reactions of carbon with oxygen-containing molecules. Carbon, 33(8), 1155–1165.
  • Ochoa, J., Cassanello, M.C., Bonelli, P.R., and Cukierman, A.L. 2001. CO2 gasification of Argentinean coal chars: A kinetic characterization. Fuel Process. Technol., 74, 161–176.
  • Ohme, H., and Suzuki, T. 1996. Mechanisms of CO2 gasification of carbon catalyzed with group VIII Metals. 1. Iron-catalyzed CO2. Energy Fuels, 10, 980–987.
  • Ohtsuka, Y., and Asami, K. 1997. Highly active catalysts from inexpensive raw materials for coal gasification. Catal. Today, 39, 111–125.
  • Perry, S.T., Hambly, E.M., Fletcher, T.H., Solum, M.S., and Pugmire, R.J. 2000. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization. Proc. Combust. Inst., 28, 2313–2319.
  • Radovic, L.R. 2005. The mechanism of CO2 chemisorption on zigzag carbon active sites: A computational chemistry study. Carbon, 43(5), 907–915.
  • Radovic, L.R. 2009. Active sites in graphene and the mechanism of CO2 formation in carbon oxidation. J. Am. Chem. Soc., 131, 17166–17175.
  • Samaras, P., Diamadopoulos, E., and Sakellaropoulos, P. 1996. The effect of mineral matter and pyrolysis conditions on the gasification of Greek lignite by carbon dioxide. Fuel, 75(9), 1108–1114.
  • Sendt, K., and Haynes, B.S. 2007. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite. J. Phys. Chem. C, 111, 5465–5473.
  • Skodras, G., and Sakellaropoulos, G.P. 2002. Mineral matter effects in lignite gasification. Fuel Process. Technol., 77–78, 151–158.
  • Spliethoff, H. 2010. Power Generation from Solid Fuels, Springer Media, Berlin, Germany.
  • Struis, R.P.W.J., Von Scala, C., Stucki, S., and Prins, R. 2002. Gasification reactivity of charcoal with CO2. Part II: Metal catalysis as a function of conversion. Chem. Eng. Sci., 57, 3593–3602.
  • Tanaka, S., U-emura, T., Ishizaki, K., Nagayoshi, K., Ikenaga, N., Ohme, H., and Suzuki, T. 1995. CO2 gasification of iron-loaded carbons: Activation of the iron catalyst with CO. Energy Fuels, 9, 45–52.
  • Wijaya, N., and Zhang, L. 2011. A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal. Energy Fuels, 25(1), 1–16.
  • Ye, D.P., Agnew, J.B., and Zhang, D.K. 1998. Gasification of a South Australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies. Fuel, 77(11), 1209–1219.
  • Yu, J., Tian, F.-J., Chow, M.C., Mckenzie, L.J., and Li, C.-Z. 2006. Effect of iron on the gasification of Victorian brown coal with steam: enhancement of hydrogen production. Fuel, 85(2), 127–133.
  • Zhu, Z., Lu, G.Q., Finnerty, J., and Yang, R.T. 2003. Electronic structure methods applied to gas–carbon reactions. Carbon, 41(4), 635–658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.