249
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

DRIFT Study of the Adsorption of NH3 and NOx over Rare Earth Concentrate Enriched from Bayan Obo Tailings

, , , , &
Pages 770-783 | Received 05 May 2017, Accepted 20 Nov 2017, Published online: 18 Jan 2018

References

  • Bosch, H.F.J. 1988. Formation and control of nitrogen oxides. Catal. Today, 2(4), 369–379.
  • Cao, F., Su, S., Xiang, J., Wang, P., Hu, S., Sun, L., and Zhang, A. 2015. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3. Fuel, 139, 232–239.
  • Carja, G., Kameshima, Y., Okada, K., and Madhusoodana, C.D. 2007. Mn–Ce/ZSM5 as a new superior catalyst for NO reduction with NH3. Appl. Catal., B, 73(1–2), 60–64.
  • Chen, J. 2007. Study on Mn-based catalysts and mechanism for selective catalytic reduction of NOx at low-temperature, Degree. Tsinghua University, Beijing.
  • Chen, L., Li, J., and Ge, M. 2009. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J. Phys. Chem. C, 113(50), 21177–21184.
  • Chen, L., Li, J., and Ge, M. 2010. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3. Environ. Sci. Technol., 44(24), 9590–9596.
  • Chen, Z., Wang, F., Li, H., Yang, Q., Wang, L., and Li, X. 2012. Low-temperature selective catalytic reduction of NOx with NH3 over Fe–Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Ind. Eng. Chem. Res., 51(1), 202–212.
  • Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P., Comelli, G., and Rosei, R. 2005. Electron localization determines defect formation on ceria substrates. Science, 309(5735), 752–755.
  • Fabrizioli, P., Bürgi, T., and Baiker, A. 2002. Environmental catalysis on iron oxide-silica aerogels: Selective oxidation of NH3 and reduction of NO by NH3. J. Catal., 206(1), 143–154.
  • France, L.J., Yang, Q., Li, W., Chen, Z., Guang, J., Guo, D., Wang, L., and Li, X. 2017. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl. Catal., B, 206, 203–215.
  • Gan, L., Liu, Q., Li, J., Wang, T., Xiong, T., and Chen, T. 2017. Preparation and activity of Mn-Ce/AC catalysts doping with Fe and its low-temperature denitration. Chin. J. Environ. Eng., 11(1), 445–449.
  • Guan, B., Lin, H., Zhu, L., and Huang, Z. 2011. Selective catalytic reduction of NOx with NH3 over Mn, Ce substitution Ti0.9V0.1O2−δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method. J. Phys. Chem. C, 115(26), 12850–12863.
  • Guo, W.Q., and Zhang, Y.P. 2015. In situ DRIFTS study of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective cataytic reduction of NOx. Paper No. 154383. Presented at the China National Symposium on Combustion, Beijing, China, October 30-November 2.
  • He, C., Wang, Y., Cheng, Y., Lambert, C. K., and Yang, R. T. 2009. Activity, stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia. Appl. Catal., A, 368(1), 121–126.
  • Jin, Q., Shen, Y., Zhu, S., Li, H., and Li, Y. 2017. Rare earth ions (La, Nd, Sm, Gd, and Tm) regulate the catalytic performance of CeO2/Al2O3 for NH3-SCR of NO. J. Mater. Res., 2017, 1–8.
  • Konstantin, H. 2000. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev., 42(1–2), 71–144.
  • Larrubia, M.A., Ramis, G., and Busca, G. 2001. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3-TiO2 SCR catalysts. Appl. Catal., B, 30(1), 101–110.
  • Li, H., Zhou, Y., Wang, X., and Wu, H. 2013. Progress in selective catalytic reduction of NOx with NH3 over cerium oxide-based catalysts. Ind. Catal., 21(1), 6–11.
  • Li, Q., Gu, H., Li, P., Zhou, Y., Liu, Y., Qi, Z., Xin, Y., and Zhang, Z. 2014a. In situ IR studies of selective catalytic reduction of NO with NH3 on Ce-Ti amorphous oxides. Chin. J. Catal., 35(8), 1289–1298.
  • Li, X., Lü, G., Song, C., Song, J., Bin, F., and Wu, S. 2014b. Mechanism of the low-temperature SCR reaction on metal modified ZSM-5 catalysts. J. Combust. Sci. Technol., 20(4), 341–347.
  • Liu, J., Li, G., Zhang, Y., Liu, X., Wang, Y., and Li, Y. 2017. Novel Ce-W-Sb mixed oxide catalyst for selective catalytic reduction of NOx with NH3. Appl. Surf. Sci., 2017, 401.
  • Long, R.Q., and Yang, R.T. 2000. Selective catalytic reduction of NO with ammonia over V2O5, doped TiO2, pillared clay catalysts. Appl. Catal., B, 24(1), 13–21.
  • Long, R.Q., and Yang, R.T. 2002. Reaction mechanism of selective catalytic reduction of NO with NH3, over Fe-ZSM-5 catalyst. J. Catal., 207(2), 224–231.
  • Ma, Z., Weng, D., Wu, X., and Si, Z. 2012. Effects of WOx modification on the activity, adsorption and redox properties of CeO2 catalyst for NOx reduction with ammonia. J. Environ. Sci., 24(7), 1305–1316.
  • Martínezarias, A., Soria, J., Conesa, J.C., Seoane, X. L., Arcoya, A., and Cataluña, R. 1995. NO reaction at surface oxygen vacancies generated in cerium oxide. J. Chem. Soc., Faraday Trans., 91(11), 1679–1687.
  • Nie, J., Wu, X., Ma, Z., Xu, T., Si, Z., Chen, L., and Weng, D. 2014. Tailored temperature window of MnOx-CeO2 SCR catalyst by addition of acidic metal oxides. Chin. J. Catal., 35(8), 1281–1288.
  • Qi, G., Yang, R.T., and Chang, R. 2004. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal., B, 51(2), 93–106.
  • Ramis, G., and Larrubia, M.A. 2004. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts. J. Mol. Catal. A: Chem., 215(1), 161–167.
  • Ramis, G., Yi, L., Busca, G., Turco, M., Kotur, E., and Willey, R. J. 1995. Adsorption, activation, and oxidation of ammonia over SCR catalysts. J. Catal., 157(2), 523–535.
  • Rodrigues, V.D.O., and Júnior, A.C.F. 2012. On catalyst activation and reaction mechanisms in propane aromatization on Ga/HZSM5 catalysts. Appl. Catal., A, 435–436(17), 68–77.
  • Shen, B.X., Ma, J., Hu, G. L., Sun, X., and Li, D. Q. 2012. Study on the doping catalyst of Mn-La/Ti-PILC for low temperature SCR. J. Fuel Chem. Technol., 40(11), 1372–1376.
  • Shen, Y., Su, Y., and Ma, Y. 2015. Transition metal ions regulate the catalytic performance of Ti0.8M0.2Ce0.2O2+x for the NH3-SCR of NO: The acidic mechanism. RSC Adv., 5(10), 7597–7603.
  • Shu, Y., Sun, H., Quan, X., and Chen, S. 2012. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. J. Phys. Chem. C, 116(48), 25319–25327.
  • Si, Z., Weng, D., Wu, X., Ma, Z., Ma, J., and Ran, R. 2013. Lattice oxygen mobility and acidity improvements of NiO-CeO2-ZrO2 catalyst by sulfation for NOx reduction by ammonia. Catal. Today, 201(1), 122–130.
  • Wang, B., Wu, X., Ran, R., Si, Z., and Weng, D. 2012. Participation of sulfates in propane oxidation on Pt/SO42−/CeO2-ZrO2 catalyst. J. Mol. Catal. A: Chem., 361–362(9), 98–103.
  • Wang, M., Si, Z.C., Chen, L., Wu, X. D, and Yu, J. 2013. Hydrothermal stability of MOx-Ce0.75Zr0.25O2 catalysts for NOx reduction by ammonia. J. Rare Earths, 31(12), 1148–1156.
  • Wang, R., Gui, K., and Liang, H. 2016a. Effect of Ce-doped on performance of supported perovskite catalyst LaMnO3/hematite for SCR of NO by NH3. Chem. Ind. Eng. Prog., 35(B11), 192–199.
  • Wang, R., Gui, K., and Liang, H. 2016b. Preparation and low temperature SCR deNOx features of supported catalyst La1-xCexMnO3/hematite. J. Southeast Univ., 46(6), 1234–1239.
  • Yao, X., Qiang, Y., Ji, Z., Lv, Y., Cao, Y., Tang, C., Gao, F., Dong, L., and Chen, Y. 2013. A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M = Zr4+, Sn4+, Ti4+) catalysts for NO + CO reaction. Appl. Catal., B, 130–131, 293–304.
  • Yao, X., Zhang, L., Li, L., et al. 2014. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature. Appl. Catal., B, 150–151(11), 315–329.
  • Zhang, P., and Li, D. 2014. Selective catalytic reduction of NO with NH3 over iron-vanadium mixed oxide catalyst. Catal. Lett., 144(5), 959–963.
  • Zhang, Y., Wang, X., Zheng, X., Song, Z., Shen, K., and Sun, K. 2013. Influence of WO3 doping on properties of MnOx/TiO2 catalyst for low temperature selective catalytic reduction of NOx by NH3. J. Central South Univ., 44(12), 5165–5172.
  • Zhu, S., Shen, Y., Li, W., and Liu, Y. 2006. Effects of doping CeO2, Er2O3 on properties of TiO2-SiO2 ceramics for catalyst supporter of deNOx. J. Rare Earths, 24(s2), 234–238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.