375
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Explosion pressure measurement of 50%H2–50%CO synthesis gas–air mixtures in various turbulent ambience

Pages 1007-1022 | Received 11 Aug 2017, Accepted 31 Dec 2017, Published online: 23 Feb 2018

References

  • Abdel-Gayed, R.G., Bradley, D., and McMahon, M. 1979. Turbulent flame propagation in premixed gases: Theory and experiment. Symp. (Int.) Combust., 17(1), 245–254.
  • Boehman, A.L., and Le Correr, O. 2008. Combustion of syngas in internal combustion engines. Combust. Sci. Technol., 180(6), 1193–1206.
  • Bradley, D., and Mitcheson, A. 1976. Mathematical solutions for explosions in spherical vessels. Combust. Flame., 26, 201–217.
  • Cammarota, F., Di Benedetto, A., Di Sarli, V., Salzano, E., and Russo, G. 2009. Combined effects of initial pressure and turbulence on explosions of hydrogen-enriched methane/air mixtures. J. Loss Prevent. Process Ind., 22(5), 607–613.
  • Chaos, M., and Dryer, F.L. 2008. Syngas combustion kinetics and applications. Combust. Sci. Technol., 180(6), 1053–1096.
  • Dahoe, A. 2005. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions. J. Loss Prevent. Proc., 18(3), 152–166.
  • Dahoe, A., Zevenbergen, J., Lemkowitz, S., and Scarlett, B. 1996. Dust explosions in spherical vessels: The role of flame thickness in the validity of the ‘cube-root law’. J. Loss Prevent. Proc., 9(1), 33–44.
  • Fan, Y., and Crowl, D.A. 2000. Predicting the maximum gas deflagration pressure over the entire flammable range. J. Loss Prevent. Proses Ind., 13(3–5), 361–368.
  • García-Armingol, T., and Ballester, J. 2015. Operational issues in premixed combustion of hydrogen-enriched and syngas fuels. Int. J. Hydrogen Energy., 40(2), 1229–1243.
  • Ge, B., Tian, Y., and Zang, S. 2016. The effects of humidity on combustion characateristics of a nonpremixed syngas flame. Int. J. Hydrogen Energy., 41(21), 9219–9226.
  • Grabarczyk, M., Teodorczyk, A., Di Sarli, V., and Di Benedetto, A. 2016. Effect of initial temperature on the explosion pressure of various liquid fuels and their blends. J. Loss Prevent. Process Ind., 44, 775–779.
  • Jiang, L.J., Shy, S.S., Li, W.Y., Huang, H.M., and Nguyen, M.T. 2016. High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames. Combust. Flame., 172, 173–182.
  • Krishna, S., and Ravikrishna, R.V. 2015. Quantitative OH planar laser induced fluorescence diagnostics of syngas and methane combustion in a cavity combustor. Combust. Sci. Technol., 187(11), 1661–1682.
  • Law, C.K., Makino, A., and Lu, T. 2006. On the off-stoichiometric peaking of adiabatic flame temperature. Combust. Flame., 145(4), 808–819.
  • Li, Q., Lin, B., and Jian, C. 2012. Investigation on the interactions of gas explosion flame and reflected pressure waves in closed pipes. Combust. Sci. Technol., 184(12), 2154–2162.
  • Li, Q., Wang, K., Zheng, Y., Mei, X., and Lin, B. 2016. Explosion severity of micro-sized aluminium dust and its flame propagation properties in 20 L spherical vessel. Power Technol., 301, 1299–1308.
  • Li, S., Zhang, X., Zhong, D., Weng, F., and Zhu, M. 2014. Syngas spark ignition behaviour at simulated gas turbine startup conditions. Combust. Sci. Technol., 186(8), 1005–1024.
  • Li, Y., Liu, F., Zhang, Q., Yu, Y., Shu, C.M., and Jiang, J. 2017. Explosion characteristics of micron-size conveyor rubber dust. J. Loss Prevent Process Ind., 45, 173–181.
  • Liang, W., Liu, J., and Law, C.K. 2017. On explosion limits of H2/CO/O2 mixtures. Combust. Flame., 179, 130–137.
  • Lv, X., Zheng, L., Zhang, Y., Yu, M., and Su, Y. 2016. Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen-air explosion. Int. J. Hydrogen Energy., 41(39), 11740–17749.
  • Mansfield, A.B., and Wooldridge, M.S. 2014. High-pressure low-temperature ignition behavior of syngas mixtures. Combust. Flame., 161(9), 2242–2251.
  • Mittal, M. 2017. Explosion pressure measurement of methane-air mixtures in different sizes of confinement. J. Loss Prevent. Process Ind., 46, 200–208.
  • Mitu, M., and Brandes, E. 2017. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air in closed spherical vessels. Fuel., 203(1), 460–468.
  • Mitu, M., Giurcan, V., Razus, D., and Oancea, D. 2012. Temperature and pressure influence on ethane-air deflagration parameters in a spherical closed vessel. Energy Fuels., 26(8), 4840–4848.
  • Mitu, M., Giurcan, V., Razus, D., Prodan, M., and Oancea, D. 2017. Propagation indices of methane-air explosions in closed vessels. J. Loss Prevent. Processs Ind., 47, 110–119.
  • Movileanu, C., Gosa, V., and Razus, D. 2012. Explosion of gaseous ethylene-air mixtures in closed cylindrical vessels with central ignition. J. Hazard. Mater., 235–236, 108–115.
  • National Fire Protection Agency, USA. 2002. Guide for venting deflagrations. No.2002-68.
  • Nie, B., Yang, L., and Wang, J. 2016. Experiments and mechanisms of gas explosion suppression with foam ceramics. Combust. Sci. Technol., 188(11–12), 2117–2127.
  • Ravi, S., and Petersen, E.L. 2012. Laminar flame speed correlations for pure-hydrogen and high-hydrogen content syngas blends with various diluents. Int. J. Hydrogen Energy., 37(24), 19177–19189.
  • Razus, D., Brinzea, V., Mitu, M., Movileanu, C., and Oancea, D. 2010. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations. J. Hazard. Mater., 174(1–3), 548–555.
  • Razus, D., Brinzea, V., Mitu, M., Movileanu, C., and Oancea, D. 2011. Temperature and pressure influence on maximum rates of pressure rise of pressure rise during explosions of propane-air mixtures in a spherical vessel. J. Hazard. Mater., 190(1–3), 891–896.
  • Razus, D., Brinzea, V., Mitu, M., and Oancea, D. 2009. Inerting effect of the combustion products on the confined deflagration of liquefied petroleum gas-air mixtures. J. Loss Prevent. Processs Ind., 22(4), 463–468.
  • Razus, D., Movileanu, C., Brinzea, V., Oancea, D. 2006. Explosion pressures of hydrocarbon–air mixtures in closed vessels. J. Hazard. Mater., 135(1–3), 58–65.
  • Razus, D., Movileanu, C., and Oancea, D. 2007. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures. J. Hazard. Mater., 139(1–2), 1–8.
  • Sayad, P., Schönborn, A., and Klingmann, J. 2016. Experimental investigation of the stability limits of premixed syngas-air flames at two moderate swirl numbers. Combust. Flame., 164, 270–282.
  • Scholte, T., and Vaags, P. 1959. Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air. Combust. Flame., 3, 511–524.
  • Sun, Z.Y. 2017. Turbulent explosion characteristics of stoichiometric syngas. Int. J. Energy Res., 2017, 1–12, doi:10.1002/er.3922.
  • Sun, Z.Y. 2018. Turbulent explosion characteristics of stoichiometric syngas. Int. J. Energy Res., 42(3), 1225–1236.
  • Sun, Z.Y., and Li, G.X. 2015. On reliability and flexibility of sustainable energy application route for vehicles in China. Renew. Sust. Energ. Rev., 51, 830–846.
  • Sun, Z.Y., and Li, G.X. 2016. Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures. Energy., 116(1), 116–127.
  • Sun, Z.Y., and Li, G.X. 2017a. Propagation speed of wrinkled premixed flames within stoichiometric hydrogen-air mixtures under standard temperature and pressure. Korean J. Chem. Eng., 34(6), 1846–1857.
  • Sun, Z.Y., and Li, G.X. 2017b. Turbulence influence on explosion characteristics of stoichiometric and rich hydrogen/air mixtures in a spherical closed vessel. Energ. Convers. Manage., 149, 526–535.
  • Tang, C., Huang, Z., Jin, C., He, J., Wang, J., Wang, X., and Miao, H. 2009. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures. Int. J. Hydrogen Energy., 34(1), 554–561.
  • Vancoillie, J., Sharpe, G., Lawes, M., and Verhelst, S. 2014. The turbulent burning velocity of methanol-air mixtures. Fuel., 130, 76–91.
  • Wang, J., Xie, Y., Cai, X., Nie, Y., Peng, C., and Huang, Z. 2016a. Effect of H2O addition on the flame front evolution of syngas spherical propagation flames. Combust. Sci. Technol., 188(7), 1054–1072.
  • Wang, J., Zhou, Y., Whiddon, R., He, Y., Cen, K., and Li, Z. 2016b. Investigation of NO formation in premixed adiabatic laminar flames of H2/CO syngas and air by saturated laser-induced fluorescence and kinetic modelling. Combust. Flame., 164, 283–293.
  • Wang, Y., Lian, Z., and Zhang, Q. 2016c. Effect of ignition location and vent on hazardous of indoor liquefied petroleum gas explosion. Combust. Sci. Technol., 189(4), 698–716.
  • Whitty, K.J., Zhang, H.R., and Eddings, E.G. 2008. Emissions from syngas combustion. Combust. Sci. Technol., 180(6), 1117–1136.
  • Wu, F., Saha, A., Chaudhuri, S., and Law, C.K. 2015. Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction. Proc. Combust. Inst., 35(1), 1501–1508.
  • Xie, Y., Wang, J., Cai, X., and Huang, Z. 2016b. Self-acceleration of cellular flames and laminar flame speed of syngas/air mixtures at elevated pressures. Int. J. Hydrogen Energy., 41(40), 18250–18258.
  • Xie, Y., Wang, J., Xi., C., and Huang, Z. 2016a. Pressure history in the explosion of moist syngas/air mixtures. Fuel., 185(1), 18–25.
  • Yenerdag, B., Minamoto, Y., Aoki, K., Shimura, M., Nada, Y., and Tanahashi, M. 2017. Flame-wall interactions of lean premixed flames under elevated, rising pressure conditions. Fuel., 189, 8–14.
  • Zhang, Y., Shen, W., Zhang, H., Wu, Y., and Lu, J. 2015. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames. Fuel., 157, 115–121.
  • Zhang, Z., Lin, B., Li, G., and Ye, Q. 2012. Explosion pressure characteristics of coal gas. Combust. Sci. Technol., 185(3), 514–531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.