115
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mathematical modeling of the detonation wave structure in the silane-air mixture

, &
Pages 1041-1059 | Received 09 Mar 2017, Accepted 05 Jan 2018, Published online: 14 Mar 2018

References

  • Britten, J.A., Tong, J., and Westbrook, C.K. 1990. A numerical study of silane combustion. Proc. Combust. Inst., 23, 195.
  • Fedorov, A.V., Fomin, P.A., Fomin, V.M., Tropin, D.A., and Chen, J.-R. 2012. Mathematical Analysis of Detonation Suppression by Inert Particles, Kao Tech Publishing, Kaohsiung, Taiwan. p. 143. ISBN 978-986-88423-0-4.
  • Fedorov, A.V., Fomin, P.A., and Tropin, D.A. 2014. Simple kinetics and detonation wave structure in a methane-air mixture. Combust. Explos. Shock Waves, 50(1), 87.
  • Fedorov, A.V., and Tropin, D.A. 2011. Determination of the critical size of a particle cloud necessary for suppression of gas detonation. Combust. Expl. Shock Waves, 47(4), 464. DOI: 10.1134/S0010508211040101
  • Fedorov, A.V., and Tropin, D.A. 2013. Modeling of detonation wave propagation through a cloud of particles in a two-velocity two-temperature formulation. Combust. Expl. Shock Waves, 49(2), 178. DOI: 10.1134/S0010508213020081
  • Fedorov, A.V., Tropin, D.A., and Bedarev, I.A. 2010. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles. Combust. Explos. Shock Waves, 46(3), 332. DOI: 10.1007/s10573-010-0046-0
  • Fomin, P.A., and Chen, J.-R. 2009. Effect of chemically inert particles on thermodynamic characteristics and detonation of a combustible gas. Combust. Sci. Technol., 181(8), 1038.
  • Fomin, P.A., and Trotsyuk, A.V. 1995. An approximate calculation of the isentrope of a gas in chemical equilibrium. Combust. Explos. Shock Waves, 31(4), 455.
  • Fomin, P.A., Trotsyuk, A.V., and Vasil’ev, A.A. 2014. Approximate model of chemical reaction kinetics for detonation processes in mixture of CH4 with air. Combust. Sci. Technol., 186(10–11), 1716.
  • Fomin, P.A., Trotsyuk, A.V., Vasil’ev, A.A., Mitropetros, K., Hieronymus, H., and Roekaerts, D. 2006. Model of chemical reaction kinetics for calculating detonation processes in gas and heterogeneous mixtures containing hydrogen peroxide. Combust. Sci. Technol., 178(5), 895.
  • Gavrilenko, T.P., Grigoriev, V.V., Zhdan, S.A., Nikolaev, Y.A., Boiko, V.M., and Papyrin, A.N. 1986. Acceleration of solid particles by gaseous detonation products. Combust. Flame, 66, 121.
  • Glushko, V.P., Ed. 1962. Thermodynamic Parameters of Individual Substances, Izdatel’stvo Academii Nauk SSSR, Moscow. [in Russian].
  • Kessler, D.A., Gamezo, V.N., and Oran, E.S. 2010. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems. Combust. Flame, 157, 2010.
  • Kondo, S., Tokuhashi, K., Takahashi, A., and Kaise, M. 2000. A numerical study of low temperature silane combustion. Combust. Sci. Technol., 159, 391.
  • Martin, J.M.L., Baldridge, K.K., and Lee, T.J. 1999. Accurate ab initio anharmonic force field and heat of formation for silane. Mol. Phys., 97(8), 945.
  • Nikolaev, Y.A. 1978. Model of the kinetics of chemical reactions at high temperatures. Combust. Explos. Shock Waves, 14(4), 468.
  • Nikolaev, Y.A., and Fomin, P.A. 1982. Analysis of equilibrium flows of chemically reacting gases. Combust. Explos. Shock Waves, 18(1), 53.
  • Nikolaev, Y.A., and Fomin, P.A. 1983. Approximate equation of kinetics in heterogeneous systems of gas-condensed-phase type. Combust. Explos. Shock Waves, 19(6), 737.
  • Nikolaev, Y.A., and Fomin, P.A. 1984. A model for stationary heterogeneous detonation in a gas-droplet mixture. Combust. Explos. Shock Waves, 20(4), 447.
  • Nikolaev, Y.A., Vasil’ev, A.A., and Ul’yanitskiy, V.Y. 2003. Gas detonation and its application in engineering and technologies (review). Combust. Explos. Shock Waves, 39(4), 382.
  • Nikolaev, Y.A., and Zak, D.V. 1988. Agreement of models of chemical reactions in gases with the second law of thermodynamics. Combust. Explos. Shock Waves, 24(4), 461.
  • Oran, E.S., and Gamezo, V.N. 2007. Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame, 148, 47.
  • Strickland-Constable, R.F. 1949. The burning velocity of gases in relation to the ignition delay. Third Symp. Comb. Flame Explo. Phenomena, 33(1), 229.
  • Tropin, D.A., and Fedorov, A.V. 2014. Mathematical modeling of detonation wave suppression by cloud of chemically inert solid particles. Combust. Sci. Technol., 186(10–11), 1690. DOI: 10.1080/00102202.2014.935637
  • Tropin, D.A., and Fedorov, A.V. 2015. Physicomathematical modeling of ignition and combustion of silane in transient and reflected shock waves. Combust. Explos. Shock Waves, 51(4), 431.
  • Tropin, D.A., and Fedorov, A.V. 2016. Calculation of ignition limits of silane-oxygen and silane-air mixtures. Combust. Explos. Shock Waves, 52(1), 46.
  • Trotsyuk, A.V. 1999. Numerical simulation of the structure of two-dimensional gaseous detonation of an H2-O2-Ar mixture. Combust. Explos. Shock Waves, 35(5), 549.
  • Trotsyuk, A.V., Fomin, P.A., and Vasil’ev, A.A. 2015. Numerical study of cellular detonation structures of methane mixtures. J. Loss Prev. Process Ind., 36, 394.
  • Zhdan, S.A., Mitrofanov, V.V., and Sychev, A.I. 1994. Reactive impulse from the explosion of a gas mixture in a semiinfinite space. Combust. Explos. Shock Waves, 30(5), 657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.