268
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Producing and properties of zinc dust flames

ORCID Icon, &
Pages 1096-1109 | Received 17 Dec 2016, Accepted 16 Jan 2018, Published online: 26 Feb 2018

References

  • Ageev, N.D., Vovchuk, Y.I., Goroshin, S.V., Zolotko, A.N., and Poletaev, N.I. 1990. Steady combustion of solid fuel gas-suspensions. laminar diffusion two-phase flame. J. Combust., Expl., Shock Waves, 26(6), 669–677.
  • Alxneit, I., and Tschudi, H.R. 2013. Modeling the formation and chemical composition of partially oxidized Zn/ZnO particles formed by rapid cooling of a mixture of Zn(g) and O2. J. Mater., 2013, 1–9.
  • Cannavo, D. 2017. Production and characterization of small sized ZnxOy molecules in gas phase, 184 p. Ph.D. thess. ETH Zurich. doi:10.3929/ethz-a-005407853
  • Eckhoff, R.K. 1997. Dust Explosions in the Process Industries, p. 643. Butterworth-Heinemann, Oxford.
  • Gandikota, V., and Xing, Y. 2014. Flame Aerosol synthesis of freestanding ZnO nanorods. J. Adv. Nanoparticles, 3, 5–13.
  • Jacobson, M., Cooper, A.K., Jacobson, M., and Nagy, J. (1964). Explosibility of metal powder. US Bureau of Mines, Washington. Report. Inv. 6516. pp. 1–25.
  • Laurendau, N.V., and Glassman, I. 1991. Ignition temperatures of metals in oxygen atmospheres. J. Combust. Sci. Technol., 3, 77–82.
  • Matxain, J.M., Fowler, J.T., and Ugalde, J.M. 2000. Small clusters of II=VI materials: ZniOi, i=1-9. Phys. Rev. A, 62(5), 053201.
  • Moezzi, A., McDonagh, A.M., and Cortie, M.B. 2012. Zinc oxide particles: synthesis, properties and applications. J. Chem. Eng., 185–186, 1–22.
  • Poletaev, N.I., and Florko, A.V. 2007. Radiative Characteristics of an Aluminum Dust Flame. J. Condensed Phase, Combust., Expl., Shock Waves, 43(4), 154–162.
  • Poletaev, N.I., and Vovchuk, J.I. 1994. The temperature field of a laminar diffusion dust flame. J. Combust. Flame, 99, 706–712.
  • Poletaev, N.I., and Vovchuk, J.I. (2004). Particularities of the laminar diffusion dust flames. Proc. of Int. Conf.on Combustion and Detonation. Zel’dovich Memorial II, CD version. Moscow.
  • Poletaev, N.I., Zolotko, A.N., and Doroshenko, Y.A. 2011. Degree of dispersion of metal combustion products in a laminar dust flame. J. Combustion, Explosion, Shock Waves, 47(2), 153–165.
  • Rackauskas, S., Klimova, O., Jiang, H., Nikitenko, A., Chernenko, K.A., Shandakov, S.D., Kauppinen, E.I., Tolochko, O.V., and Nasibulin, A.G. 2015. A novel method for continuous synthesis of ZnO tetrapods. J. Phys. Chem. C, 119(28), 16366–16373.
  • Rumanov, E.N., and Khaikin, B.I. 1971. Flame propagation over a mixture of particles in a gas. Dokl. Akad. Nauk SSSR., 201(1), 144–147.
  • Steinfeld, A. 2002. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn=ZnO redox reactions. Int. J. Hydrogen Energy., 27, 611–619.
  • Steinfeld, A. 2005. Solar thermochemical production of hydrogen. J. Solar Energy, 78, 603–615.
  • Trusov, B.G. 2002. TERRA computer system for modeling phase and chemical equilibrium. Proc. XIV Int. Conf. on Chemical Thermodynamics, St. Petersburg, Russia.
  • Viter, R., Jekabsons, K., Kalnina, Z., Poletaev, N., Hsu, S., and Riekstina, U. 2016. Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods. Nanotechnology, 27, 11pp.
  • Viter, R., Khranovsky, V., Sturodub, N., et al. 2014. Application of room temperature Photoluminescence from ZnO nanorods for salmonella detection. IEEE Sens. J., 14(6), 228–234.
  • Wallace, R., Brown, A.P., Brydson, R., Wegner, K., and Milne, S.J. 2013. Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterization protocol. J. Mater. Sci., 48(18), 6393–6403.
  • Zeldovich, Y.B. 1949. On the theory of combustion of initially unmixed gases, NACA, Tech. Memo. 1296, 1951. Zhurnal Tekhnicheskoi Fiziki, 19, 1199–1210.
  • Zlochower, I.A., Cashdollar, K.I., and Hertzberg, M. 1992. Metal dust combustion: explosion limits, pressure, and temperatures. Twenty forth Symposium on Combustion,Pittsburgh, PA, pp. 1827–1835.
  • Zolotko, A.N., Poletaev, N.I., and Vovchuk, Y.I. 2015. Gas-disperse synthesis of metal oxide particles. J. Combustion, Explosion, Shock Waves, 51(2), 299–312.
  • Zolotko, A.N., Vovchuk, Y.I., Poletaev, N.I., Florko, A.V., and Al’tman, I.S. 1996. Synthesis of nanooxides in two-phase laminar flames. J. Combust., Expl., Shock Waves, 32(3), 262–269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.