327
Views
17
CrossRef citations to date
0
Altmetric
Articles

Ignition of combustible mixtures by hot particles at varying relative speeds

ORCID Icon, , ORCID Icon &
Pages 178-195 | Received 31 Oct 2017, Accepted 28 Jan 2018, Published online: 02 Mar 2018

References

  • Baehr, H., Park, N., and Stephan, K. 2013. Heat and Mass Transfer, Springer Berlin, Heidelberg.
  • Beyer, M., and Markus, D. 2012. Ignition of explosive atmospheres by small hot particles: comparison of experiments and simulations. Sci Technol Energ Ma., 73(1), 1–7.
  • Conaire, M.Ó., Curran, H.J., Simmie, J.M., Pitz, W.J., and Westbrook, C.K. 2004. A comprehensive modeling study of hydrogen oxidation. Int. J. Environ. Anal. Chem., 36(11), 603–622.
  • Goodwin, D., Moffat, H., and Speth, R. 2017. “Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. version 2.3.0b.” Software available at http://www.cantera.org.
  • Häber, T., Zirwes, T., Roth, D., Zhang, F., Bockhorn, H., and Maas, U. 2017. Numerical simulation of the ignition of fuel/air gas mixtures around small hot particles. Z. Phys. Chem., 231, 281.
  • Kee, R., Coltrin, M., and Glarborg, P. 2005. Chemically Reacting Flow: Theory and Practice, Wiley: New Jersey.
  • Konnov, A. 2008. Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combust. Flame, 152 (4), 507–528.
  • Kumagai, S., and Kimura, I. 1957. Ignition of flowing gases by heated wires. Proc. Combust. Inst., 6(1), 554–558.
  • Laurendeau, N. 1982. Thermal ignition of methane-air mixtures by hot surfaces: A critical examination. Combust. Flame, 46, 29–49.
  • Law, C. 1978a. Ignition of a combustible mixture by a hot particle. Aiaa J., 16(6), 628–630.
  • Law, C. 1978b. On the stagnation-point ignition of a premixed combustible. Int. J. Heat. Mass. Transfer, 21(11), 1363–1368.
  • Li, J., Zhao, Z., Kazakov, A., and Dryer, F.L. 2004. An updated comprehensive kinetic model of hydrogen combustion. Int. J. Environ. Anal. Chem., 36(10), 566–575.
  • Little, A. 1980. The Feasibility of Methods and Systems for Reducing LNG Tanker Fire Hazards, The Division. Minnesota.
  • Maas, U., and Warnatz, J. 1988. Ignition processes in hydrogenî—¸ oxygen mixtures. Combustion and Flame, 74(1), 53–69.
  • Melguizo-Gavilanes, J., Coronel, S., Mével, R., and Shepherd, J. 2017a. Dynamics of ignition of stoichiometric hydrogen-air mixtures by moving heated particles. Int. J. Hydrogen. Energy, 42(11), 7380–7392.
  • Melguizo-Gavilanes, J., Mével, R., Coronel, S., and Shepherd, J. 2017b. Effects of differential diffusion on ignition of stoichiometric hydrogen-air by moving hot spheres. Proc. Combust. Inst., 36(1), 1155–1163.
  • Mullen, J., Fenn, J., and Irby, M. 1948. The ignition of high velocity streams of combustible gases by heated cylindrical rods. Symp.Combust. Flame, Explosion Phenom., 3(1), 317–329.
  • Paterson, S. 1939. XLII. the ignition of inflammable gases by hot moving particles. Lond. Edinb. Dubl. Phil. Mag. Series 28, 186, 1–23.
  • Paterson, S. 1969. I. the ignition of inflammable gases by hot moving particles. Lond. Edinb. Dubl. Phil. Mag. Series 28, 186, 1–23.
  • Powell, F. 1969. Ignition of gases and vapors. Ind. Eng. Chem., 61(12), 29–37.
  • Roth, D., Häber, T., and Bockhorn, H. 2017. Experimental and numerical study on the ignition of fuel/air mixtures at laser heated silicon nitride particles. Proc. Combust. Inst., 36 (1), 1475–1484.
  • Roth, D., Sharma, P., Häber, T., Schiessl, R., Bockhorn, H., and Maas, U. 2014. Ignition by mechanical sparks: ignition of hydrogen/air mixtures by submillimeter-sized hot particles. Combust Sci Technol., 186 (10–11), 1606–1617.
  • Silver, R. 1937. LXV. the ignition of gaseous mixtures by hot particles. Lond. Edinb. Dubl. Phil. Mag. Series 23, 156, 633–657.
  • Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner, W., Lissianski, V., and Qi, Z. 1995 Gri 3.0 Reaction Mechanism. Berkeley, Berkeley University.
  • Vit, T., Ren, M., Trávnek, Z., Maršk, F., and Rindt, C. 2007. The influence of temperature gradient on the strouhal–reynolds number relationship for water and air. Exp. Therm Fluid Sci., 31(7), 751–760.
  • Weller, H., Tabor, G., Jasak, H., and Fureby, C. 2017. “OpenFOAM, openCFD ltd.” Software available at https://openfoam.org.
  • Zhang, F., Bonart, H., Zirwes, T., Habisreuther, P., Bockhorn, H., and Zarzalis, N. 2015. “Direct numerical simulation of chemically reacting flows with the public domain code openfoam,” High Performance Computing in Science and Engineering ‘14 (Nagel, W., Kröner, D., and Resch, M., eds.), pp. 221–236, Springer Berlin Heidelberg.
  • Zirwes, T., Zhang, F., Denev, J., Habisreuther, P., and Bockhorn, H. 2017. “Automated code generation for maximizing performance of detailed chemistry calculations in openfoam,” in High Performance Computing in Science and Engineering ‘17 (Nagel, W., Kröner, D., and Resch, M., eds.), Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-319-68394-2_11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.