276
Views
16
CrossRef citations to date
0
Altmetric
Articles

REDIM reduced modeling of flame quenching at a cold wall – The influence of detailed transport models and detailed mechanisms

, &
Pages 208-222 | Received 30 Oct 2017, Accepted 08 Feb 2018, Published online: 13 Apr 2018

References

  • Barths, H., Peters, N., Brehm, N., Mack, A., Pfitzner, M., and Smiljanovski, V. 1998. Simulation of pollutant formation in a gas-turbine combustor using unsteady Symposium (International) on Combustion flamelets. 27(2), 1841–1847.
  • Bruneaux, G., Akselvoll, K., Poinsot, T., and Ferziger, J. 1996. Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame, 107(1), 27–44.
  • Bykov, V., and Maas, U. 2007. The extension of the ILDM concept to reaction–diffusion manifolds. Combust. Theory Model., 11(6), 839–862.
  • Carter, W.P., and Atkinson, R. 1996. Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx. Int. J. Chem. Kinet., 28(7), 497–530.
  • De Charentenay, J., and Ern, A. 2002. Multicomponent transport impact on turbulent premixed H 2/O 2 flames. Combust. Theory Model., 6(3), 439–462.
  • Gicquel, O., Darabiha, N., and The´Venin, D. 2000. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst., 28(2), 1901–1908.
  • Goussis, D.A., and Maas, U. 2011. Model reduction for combustion chemistry. In Turbulent Combustion Modeling (pp. 193–220). Springer Netherlands.
  • Grcar, J.F., Bell, J.B., and Day, M.S. 2009. The Soret effect in naturally propagating, premixed, lean, hydrogen–air flames. Proc. Combust. Inst., 32(1), 1173–1180.
  • Jainski, C., Rißmann, M., Bo¨Hm, B., and Dreizler, A. 2017. Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction. Proc. Combust. Inst., 36(2), 1827–1834.
  • Law, C. 1982. Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci., 8(3), 171–201.
  • Maas, U., and Bykov, V. 2011. The extension of the reaction/diffusion manifold concept to systems with detailed transport models. Proc. Combust. Inst., 33(1), 1253–1259.
  • Maas, U., and Pope, S.B. 1992. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame, 88(3), 239–264.
  • Maas, U., and Warnatz, J. 1988. Ignition processes in hydrogen–oxygen mixtures. Combust. Flame, 74(1), 53–69.
  • Mann, M., Jainski, C., Euler, M., Bo¨Hm, B., and Dreizler, A. 2014. Transient flame–wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements. Combust. Flame, 161(9), 2371–2386.
  • Neagos, A., Bykov, V., and Maas, U. 2017. Adaptive hierarchical construction of Reaction–diffusion Manifolds for simplified chemical kinetics. Proc. Combust. Inst., 36(1), 663–672.
  • Popp, P., and Baum, M. 1997. Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame, 108(3), 327–348.
  • San Diego Mechanism web page. 2011. Chemical–kinetic mechanisms for combustion applications, mechanical and aerospace engineering (Combustion Research), University of California at San Diego, version 2011–11–2ʹ. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C.G., Jr, Lissianski, V.V., and Qin, Z. 1999. GRI 3.0 Mechanism, Gas Research Institute. http://www.me.berkeley.edu/grimech.
  • Smooke, M., Puri, I., and Seshadri, K. 1988. A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. Symp. (Int.) Combust., 21, 1783–1792, Elsevier.
  • Stahl, G., and Warnatz, J. 1991. Numerical investigation of time-dependent properties and extinction of strained methane and propane-air flamelets. Combust. Flame, 85(3–4), 285–299.
  • Steinhilber, G., Bykov, V., and Maas, U. 2017. REDIM reduced modeling of flame-wall-interactions: quenching of a premixed methane/air flame at a cold inert wall. Proc. Combust. Inst., 36(1), 655–661.
  • Strassacker, C., Bykov, V., and Maas, U. 2017. REDIM reduced modeling of quenching at a cold wall including heterogeneous wall reactions. Submitted Int. J. Heat Fluid Flow, 69, 185–193.
  • Van Oijen, J., and De Goey, L. 2002. Modelling of premixed counterflow flames using the flamelet-generated manifold method. Combust. Theory Model., 6(3), 463–478.
  • Wang, H., Reitz, R.D., Yao, M., Yang, B., Jiao, Q., and Qiu, L. 2013. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combust. Flame, 160(3), 504–519.
  • Warnatz, J., Maas, U., Dibble, R., and Warnatz, J. 2001. Combustion, Springer, Berlin.
  • Weathers, J., Luck, R., and Weathers, J. 2009. An exercise in model validation: comparing univariate statistics and Monte Carlo-based multivariate statistics. Reliab. Eng. Syst. Saf., 94(11), 1695–1702.
  • Westbrook, C.K., Pitz, W.J., Herbinet, O., Curran, H.J., and Silke, E.J. 2009. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust. Flame, 156(1), 181–199.
  • Zhou, X., and Pereira, J. 1997. Numerical study of combustion and pollutants formation in inert nonhomogeneous porous media. Combust. Sci. Technol., 130(1–6), 335–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.