350
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets

, , , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1218-1231 | Received 18 Jan 2018, Accepted 19 Feb 2018, Published online: 08 Mar 2018

References

  • Abdelghaffar, W.A., Elwardany, A., and Sazhin, S. 2010. Modeling of the processes in diesel engine- like conditions: effects of fuel heating and evaporation. Atomization Sprays, 20, 737–747.
  • Abramzon, B., and Sirignano, W. 1989. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf., 32, 1605–1618.
  • Ahmed, A., Goteng, G., Shankar, V.S., Al-Qurashi, K., Roberts, W.L., and Sarathy, S.M. 2015. A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties. Fuel, 143, 290–300.
  • Amsden, A.A., O’rourke, P., and Butler, T. 1989. KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Lab., New Mexico (USA).
  • Anand, K., Ra, Y., Reitz, R., and Bunting, B. 2011. Surrogate model development for fuels for advanced combustion engines. Energy Fuels, 25, 1474–1484.
  • Badra, J., Elwardany, A., Sim, J., Viollet, Y., Im, H., and Chang, J. 2016a. Effects of in-cylinder mixing on low octane gasoline compression ignition combustion. SAE Technical Paper.
  • Badra, J., Viollet, Y., Elwardany, A., Im, H.G., and Chang, J. 2016b. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion. Appl. Energy, 183, 1197–1208.
  • Badra, J.A., Sim, J., Elwardany, A., Jaasim, M., Viollet, Y., Chang, J., Amer, A., and Im, H.G. 2016c. Numerical simulations of hollow-cone injection and gasoline compression ignition combustion with naphtha fuels. J. Energy Resour. Technol., 138, 052202.
  • Beale, J.C., and Reitz, R.D. 1999. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. Atomization Sprays, 9, 623–650.
  • Castanet, G., Lavieille, P., Lebouché, M., and Lemoine, F. 2003. Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence. Exp. Fluids, 35, 563–571.
  • Chang, J., Kalghatgi, G., Amer, A., and Viollet, Y. 2012. Enabling high efficiency direct injection engine with naphtha fuel through partially premixed charge compression ignition combustion. SAE Technical Paper.
  • Chang, J., Viollet, Y., Alzubail, A., Abdul-Manan, A.F.N., and Al Arfaj, A. 2015. Octane-on-demand as an enabler for highly efficient spark ignition engines and greenhouse gas emissions improvement. SAE Technical Paper.
  • Chang, J., Viollet, Y., Amer, A., and Kalghatgi, G. 2013. Fuel economy potential of partially premixed compression ignition (PPCI) combustion with naphtha fuel. SAE Technical Paper.
  • Elwardany, A., Gusev, I., Castanet, G., Lemoine, F., and Sazhin, S. 2011. Mono-and multi-component droplet cooling/heating and evaporation: comparative analysis of numerical models. Atomization Sprays, 21, 907–931.
  • Elwardany, A., Sazhin, S., and Farooq, A. 2013. Modelling of heating and evaporation of gasoline fuel droplets: a comparative analysis of approximations. Fuel, 111, 643–647.
  • Fluent, A. 2011. 14.0: Theory Guide, Ansys, Inc., Canonsburg, PA.
  • Ghosh, P., Hickey, K.J., and Jaffe, S.B. 2006. Development of a detailed gasoline composition-based octane model. Ind. Eng. Chem. Res., 45, 337–345.
  • Hao, H., Liu, F., Liu, Z., and Zhao, F. 2016. Compression ignition of low-octane gasoline: life cycle energy consumption and greenhouse gas emissions. Appl. Energy, 181, 391–398.
  • Javed, T., Nasir, E.F., Ahmed, A., Badra, J., Djebbi, K., Beshir, M., Ji, W., Sarathy, S.M., and Farooq, A. 2016. Ignition delay measurements of light naphtha: a fully blended low octane fuel. Proc. Combust. Inst, 36, 315–322.
  • Mannaa, O., Mansour, M.S., Roberts, W.L., and Chung, S.H. 2015. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON. Combust. Flame, 162, 2311–2321.
  • Maqua, C., Castanet, G., Lemoine, F., Doué, N., and Lavergne, G. 2006. Temperature measurements of binary droplets using three-color laser-induced fluorescence. Exp. Fluids, 40, 786.
  • Mehl, M., Pitz, W.J., Westbrook, C.K., and Curran, H.J. 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst., 33, 193–200.
  • Nadkarni, R. 2007. Guide to ASTM Test Methods for the Analysis of Petroleum Products and Lubricants, ASTM International West Conshohocken. PA (USA).
  • Naser, N., Jaasim, M., Atef, N., Chung, S.H., Im, H.G., and Sarathy, S.M. 2017. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels. Fuel, 207, 373–388.
  • O’Rourke, P.J. 1989. Statistical properties and numerical implementation of a model for droplet dispersion in a turbulent gas. J. Comput. Phys., 83, 345–360.
  • Pitz, W.J., Cernansky, N.P., Dryer, F.L., Egolfopoulos, F., Farrell, J., Friend, D., and Pitsch, H. 2007. Development of an experimental database and chemical kinetic models for surrogate gasoline fuels. SAE Technical Paper.
  • Poling, B.E., Prausnitz, J.M., John Paul, O.C., and Reid, R.C. 2001. The Properties of Gases and Liquids, McGraw-Hill, New York.
  • Ra, Y., and Reitz, R.D. 2015. A combustion model for multi-component fuels using a physical surrogate group chemistry representation (PSGCR). Combust. Flame, 162, 3456–3481.
  • Richards, K., Senecal, P., and Pomraning, E. 2013. CONVERGE 2.1. 0 Theory Manual, Convergent Science, Inc, Middleton, WI.
  • Rybdylova, O., Al Qubeissi, M., Braun, M., Crua, C., Manin, J., Pickett, L.M., De Sercey, G., Sazhina, E., Sazhin, S., and Heikal, M. 2016. A model for droplet heating and its implementation into ANSYS fluent. Int. Commun. Heat Mass. Transfer, 76, 265–270.
  • Rybdylova, O., Poulton, L., Al Qubeissi, M., Elwardany, A., Crua, C., Khan, T., and Sazhin, S. 2018. A model for multi-component droplet heating and evaporation and its implementation into ANSYS fluent. Int. Commun. Heat Mass. Transfer, 90, 29–33.
  • Sazhin, S., Al Qubeissi, M., Kolodnytska, R., Elwardany, A., Nasiri, R., and Heikal, M. 2014. Modelling of biodiesel fuel droplet heating and evaporation. Fuel, 115, 559–572.
  • Sazhin, S., Elwardany, A., Krutitskii, P., Castanet, G., Lemoine, F., Sazhina, E., and Heikal, M. 2010. A simplified model for bi-component droplet heating and evaporation. Int. J. Heat Mass. Transf., 53, 4495–4505.
  • Sazhin, S., Elwardany, A., Sazhina, E., and Heikal, M. 2011. A quasi-discrete model for heating and evaporation of complex multicomponent hydrocarbon fuel droplets. Int. J. Heat Mass. Transf., 54, 4325–4332.
  • Schmidt, D.P., and Rutland, C. 2000. A new droplet collision algorithm. J. Comput. Phys., 164, 62–80.
  • Sim, J., Badra, J., Elwardany, A., and Im, H. 2016. Spray modeling for outwardly-opening hollow-cone injector. SAE 2016 World Congress & Exhibition, Detroit, Michigan, USA.
  • Sirignano, W.A. 1999. Fluid Dynamics and Transport of Droplets and Sprays, Cambridge university press, Cambridge, England.
  • Viollet, Y., Abdullah, M., Alhajhouje, A., and Chang, J. 2015. Characterization of high efficiency octane-on-demand fuels requirement in a modern spark ignition engine with dual injection system. SAE Technical Paper.
  • Viollet, Y., Chang, J., and Kalghatgi, G. 2014. Compression ratio and derived cetane number effects on gasoline compression ignition engine running with naphtha fuels. SAE Int. J. Fuels Lubricants, 7, 412–426.
  • Wang, L., Badra, J.A., Roberts, W.L., and Fang, T. 2017. Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels. Fuel, 190, 113–128.
  • Yaws, C.L. 1995a. Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases, Gulf Professional Publishing, Houston, Tex.a.
  • Yaws, C.L. 1995b. Handbook of Vapor Pressure: Organic Compounds, Gulf Professional Publishing, Houston, Tex.
  • Yaws, C.L. 2008. Thermophysical Properties of Chemicals and Hydrocarbons, William Andrew, Norwich, NY.
  • Zhang, Y., Voice, A., Tzanetakis, T., Traver, M., and Cleary, D. 2016. An evaluation of combustion and emissions performance with low cetane naphtha fuels in a multicylinder heavy-duty diesel engine. J. Eng. Gas Turb. Power, 138, 102805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.