302
Views
4
CrossRef citations to date
0
Altmetric
Short Communications

New ignition methods for droplet combustion studies

, &
Pages 1302-1312 | Received 12 Dec 2017, Accepted 22 Feb 2018, Published online: 20 Apr 2018

References

  • Aggarwal, S.K. 2014. Single droplet ignition: theoretical analyses and experimental findings. Prog. In Energy and Comb. Sci., 45, 79.
  • Badakhshan, A., and Danczyk, S. (2014) Ignition of nanoparticles by a compact camera flash. AFRL-RQ-ED-TR-2014-0029, Air Force Research Laboratory (AFMC), Edwards Air Force Base, CA.
  • Badakhshan, A., Danczyk, S., Forliti, D., Leyva, I.A., and Talley, D.G., (2016) Nano-ignition torch applied to cryogenic H2/O2 coaxial jet, 54th AIAA Aerospace Sciences Meeting, paper AIAA 2016-0184, San Diego, California, USA.
  • Bazyn, T., Glumac, N., Krier, H., Ward, T.S., Schoenitz, M., and Dreizin, E.L. 2007. Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders. Comb. Sci. Tech., 179, 457.
  • Bennewitz, J.W., Badakhshan, A., and Talley, D. (2017) Combustion characteristics of hydrocarbon droplets induced by photoignition of aluminum nanoparticles, 10th US Nat. Comb. Meeting, College Park, MD., http://www.dtic.mil/docs/citations/AD1034441.
  • Bennewitz, J.W., Badakhshan, A., and Talley, D.G. (2018), Systematic measurement of hydrocarbon fuel droplet burning rate constants and ignition delays, 2018 AIAA SciTech Meeting Forum, Kissimmee, Florida.
  • Bergeron, C.A., and Hallett, W.L.H. 1989. Ignition characteristics of liquid hydrocarbon fuels as single droplets. Canadian J. Of Chem. Eng., 67, 142.
  • Castronuovo, L., Dunn-Rankin, L., and Garman, J. 2015. Photoignited aluminum nanopowder combustion in air. J. Of Aero. Astro. Avia., 47, 297.
  • Chickos, J.S., and Zhao, H. 2005. Measurement of the vaporization enthalpy of complex mixtures by correlation-gas chromatography. The vaporization enthalpy of RP-1, JP-7, and JP-8 rocket and jet fuels at T = 298.15 K. Energy and Fuels, 19, 2064. doi:10.1021/ef050116m.
  • Dahyabhai, S.V., and Rathod, P.P. 2014. An experimental investigation on droplet ignition of bio-diesel and its blends. Ijaerd, 1, 420.
  • EPA. 1995. AP-42: Compilation of Air Emission Factors, U.S. Environmental Protection Agency, Research Triangle Park, NC.
  • Gilje, S., Dubin, S.A., Badakhshan, A., Farrar, J., Danczyk, S.A., and Kaner, R.B. 2010. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Matt., 22, 419.
  • Glushkov, D.O., Legros, J.C., Strizhak, P.A., and Zakharevich, A.V. 2016a. Heat and mass transfer at the ignition of vapors of volatile liquid fuels by hot metal core: experimental study and modelling. Inter. J. Of Heat and Mass Transfer, 92, 1182.
  • Glushkov, D.O., Legros, J.C., Strizhak, P.A., and Zakharevich, A.V. 2016b. Experimental and numerical study of heat transfer and oxidation reaction during ignition of diesel fuel by a hot particle. Fuel, 175, 105.
  • Haynes, W., Lide, D.R., and Bruno, T.J. 2017. CRC Handbook of Chemistry and Physics, 97th, CRC Press, Boca Raton, FL.
  • Huber, M., Lemmon, E., Ott, L., and Bruno, T. 2009. Preliminary surrogate mixture models for the thermophyscial properties of rocket propellants RP-1 and RP-2. Energy and Fuels, 23, 6, 3083–3088. doi:10.1021/ef900216z.
  • Javed, I., Baek, S.W., and Waheed, K. 2015. Autoignition and combustion characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures. Comb. Flame, 162, 191.
  • Kresnyak, S., and Giles, T., (2015) Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation, U.S. Patent, No. US 9-115-324-B2, doi:10.1016/0010-2180(72)90009-0.
  • Linstrom, P., and Mallard, W. 2017. NIST Chemistry Webbook, NIST Standard Reference Database 69, National Inst. of Standard and Tech., Gaithersburg, MD.
  • Lou, G. et al. 2007. Ignition of premixed hyrocarbon-air flows by repetitively pulsed, nanosecond pulse duration plasma. Proc. Comb. Inst., 31, 3327.
  • Ma, B., Wang, G., Magnotti, G., Barlow, R.S., and Long, M.B. 2014. Intensity-ratio and color-ratio thin-filament pyrometry: uncertainties and accuracy. Comb. Flame, 161, 908.
  • NRC. 1996. Permissible Exposure Levels for Selected Military Fuel Vapors, National Academies Press (US), Washington DC.
  • Ohkura, Y., Rao, P.M., and Zheng, X. 2011. Flash ignition of Al nanoparticles: mechanism and applications. Comb. And Flame, 158, 2544.
  • Ohkura, Y., Weisse, J.M., Cai, L., and Zheng, X. 2013. Flash ignition of freestanding porous silicon films: effects of film thickness and porosity. Nano Lett., 13, 5528.
  • Oksanen, M., Scholz, R., and Fabbri, L. 1997. On the longitudinal thermal diffusivity of SiC-based fibres. J. Of Mat. Sci. Lett, 16, 1092.
  • Risha, G.A., Son, S.F., Yetter, R.A., Yang, V., and Tappan, B.C. 2007. Combustion of nano-aluminum and liquid water. Proc, Comb. Inst., 31, 2029.
  • Saitoh, T., Ishiguro, S., and Niioka, T. 1982. An experimental study of droplet ignition characteristics near the ignitable limit. Combust. Flame, 48, 27.
  • Sazhin, S.S. 2006. Advanced models of fuel droplet heating and evaporation, Prog. Energy and Comb. Sci., 32, 162.
  • Schutze, A. et al. 1998. The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans. Plasma Sci., 26, 1685.
  • Starikovskaya, S.M., Aleksandrov, N.L., Kosarev, I.N., Kindysheva, S.V., and Starikovskii, A.Y. 2009. Ignition with low-temperature plasma: kinetic mechanism and experimental verification. High Eng. Chem., 43, 213.
  • Starikovskaya, S.M., and Starikovskii, A.Y. 2010. Plasma-Assisted Ignition and Combustion, Handbook of Comb, Part 5, Wiley Online Library 2010 and references there in.
  • Struk, P., Dietrich, D., Valentine, R., and Feier, I. (2003) Comparisons of gas-phase temperature measurements in a flame using thin-filament pyrometry and thermocouples, 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA 2003–2853.
  • Tanabe, M., Bolik, T., Eigenbrod, C., Rath, H.J., Sato, J., and Kono, M. 1996. Spontaneous ignition of liquid droplets from a view of non-homogeneous mixture formation and transient chemical reactions. Symp. Comb., 26, 1637.
  • Tanabe, M., Kono, M., Sato, J., Koenig, J., Eigenbrod, C., and Dinkelacker, F. 1995. Two-stage ignition of n-heptane isolated droplets. Comb. Sci. Tech., 108, 103.
  • Tanabe, M., Kono, M., Sato, J., Koenig, J., Eigenbrod, C., and Rath, H.J. 1994. Effects of natural convection on two-stage ignition of an n-dodecane droplet. Proc. Combust. Inst., 25, 933.
  • Wong, S.C., Hsu, T.S., and Chang, J.C. 1996. Validity of droplet ignition criterion derived assuming gas-phase quasisteadiness. J. Prop. Power, 12, 18.
  • Wu, F.H., Padilla, R.E., Dunn-Rankin, D., Chen, G.B., and Chao, Y.C. 2017. Thermal structure of methane hydrate fueled flames. Proc. Of Comb. Inst., 36, 4391.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.